Development and evaluation of refined annualized individual tree diameter and height increment equations for the Acadian Variant of the Forest Vegetation Simulator: Implication for forest carbon estimates

Christian Kuehne, Aaron Weiskittel, John A. Jr. Kershaw


Tree diameter increment $\left( \Delta DBH \right)$ and total tree height increment $\left( \Delta HT \right)$ are key components of a forest growth and yield model. A problem in complex, multi-species forests is that individual tree attributes such as $\Delta DBH$ and $\Delta HT$ need to be characterized for a large number of distinct woody species of highly varying levels of occurrence. Based on more than 2.5 million $\Delta DBH$ observations and over 1 million $\Delta HT$ records from up to 60 tree species and genera, respectively, this study aimed to improve existing $\Delta DBH$ and $\Delta HT$ equations of the Acadian Variant of the Forest Vegetation Simulator (FVS-ACD) using a revised method that utilize tree species as a random effect. Our study clearly highlighted the efficiency and flexibility of this method for predicting $\Delta DBH$ and $\Delta HT$. However, results also highlighted shortcomings of this approach, e.g.,~reversal of plausible parameter signs as a result of combining fixed and random effects parameter estimates after extending the random effect structure by incorporating North American ecoregions. Despite these potential shortcomings, the newly developed $\Delta DBH$ and $\Delta HT$ equations outperformed the ones currently used in FVS-ACD by reducing prediction bias quantified as mean absolute bias and root mean square error by at least 11\% for an independent dataset and up to 41\% for the model development dataset. Using the revised $\Delta DBH$ and $\Delta HT$ estimates, greater prediction accuracy in individual tree aboveground live carbon mass estimation was also found in general but performance varied with dataset and accuracy metric examined. Overall, this analysis highlights the importance and challenges of developing robust $\Delta DBH$ and $\Delta HT$ equations across broad regions dominated by mixed-species, managed forests.


Multi-level mixed effect models; multi species forests; diameter and height increment; forest growth and yield; FVS---Forest Vegetation Simulator.

Full Text:



Affleck, D.L.; U. Dieguez-Aranda. 2016. Additive nonlinear biomass equations: a likelihood-based approach. For. Sci. 62(2): 129–140. doi: .5849/forsci.15-126.

Bechtold, W.A.; P.L. Patterson (Eds). 2005. Forest Inventory and Analysis national sample design and estimation procedures. USDA For Serv Gen. Tech. Rep. SRS-GTR-80. Available online at: https://www.fs Last accessed Aug. 31, 2022

Bose, A.K.; A.R. Weiskittel; R.G. Wagner; C. Kuehne. 2016. Assessing the factors influencing natural re- generation patterns in the diverse, multi-cohort, and managed forests of Maine, USA. J. Veg. Sci. 27(6): 1140–1150. doi: 433

Bose, A.K., A. Weiskittel; R.G. Wagner. 2017. A three decade assessment of climate-associated changes in forest composition across the north-eastern USA. J. Appl. Ecol. 54: 1592–1604. doi: 10.1111/1365-2664.12917

Braun, E.L. 1950. Deciduous forests of eastern North America. Hafner, New York, NY. 596 pp.

Cao, Q.V. 2000. Prediction of annual diameter growth and survival for individual trees from periodic measurements. For. Sci. 46(1): 127–131. doi: https: //

Colmanetti, M.A.A.; A. Weiskittel; L.M. Barbosa; R.T. Shirasuna; F.C. de Lima; P.R.T. Ortiz; E.L.M. Catharino; T.C. Barbosa; H.T.Z. do Couto. 2018. Aboveground biomass and carbon of the highly di- verse Atlantic Forest in Brazil: comparison of alternative individual tree modeling and prediction strategies. Carbon Manage. 9(4): 383–397. doi: https: //

Commission for Environmental Cooperation. 2006. Eco- logical regions of North America – Levels I, II, and III: Montreal, Quebec, Canada, Commission for Environmental Cooperation, scale 1:10,000,000, Avail- able online at: arch/ecoregions-north-america. Last accessed Aug. 31, 2022

Crookston, N.L.; G.E. Dixon. 2005. The forest vegetation simulator: a review of its structure, content, and applications. Comput. Electron. Agr. 49(1): 60–80. doi: .003

Dixon, G.E.; C.E. Keyser. 2018. Northeast (NE) variant overview-Forest Vegetation Simulator (revised March 16, 2018). Internal Rep Fort Collins, CO. USDA For. Serv. For. Manage. Serv. Cen. Fort Collins, CO. 40 p.

Eyre, F.H.. 1980. Forest cover types of the United States and Canada. Society of American Foresters. Washing- ton DC.

Gawler, S.C.; A. Cutko. 2010. Natural landscapes of Maine: A guide to natural communities and ecosystems. Maine Natural Areas Program. Department of Conservation, Augusta, ME.

Hann, D.W.; A.R. Weiskittel. 2010. Evaluation of alternative approaches for predicting individual tree volume growth rate. West. J. Appl. For. 25: 120–126. doi:

Hasenauer, H.; R.A. Monserud; T.G. Gregoire. 1998. Using simultaneous regression techniques with individual-tree growth models. For. Sci. 44(1): 87–95. doi: .1.87

Hennigar, C.; A. Weiskittel. 2018. Stand development prediction accuracy of two individual-tree growth models for the Acadian Forest Region: FVS-ACD & OSM-ACD. NEFIS Publication 14715, Center for Research on Sustainable Forests. University of Maine, Orono, ME. Available online at: https://nefismem ction-accuracy-of-two-individual-tree-stat istical-growth-models-for-the-acadian-fore st-region-fvs-acd-and-osm-acd/. Last accessed Aug. 31, 2022.

Juma, R.; T. Pukkala; S. de–Miguel; M. Muchiri. 2014. Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals — a case study for Pinus patula in Kenya. For. Ecosyst. 1: 14. doi: 10.1186/s40663-014-0014-3

Kenefic, L.S.; N. Rogers; J.J. Puhlick; J.D. Waskiewicz; J.C. Brissette. 2015. Overstory tree and regeneration data from the ”Silvicultural Effects on Composition, Structure, and Growth” study at Penobscot Experimental Forest. 2nd Edition. Fort Collins, CO: Forest Service Research Data Archive. Available online at: Last accessed Aug. 31, 2022..

Kuehne, C; JJ Puhlick; AR Weiskittel. 2018a. Ecological Reserves in Maine: Initial results of long-term monitoring. University of Maine. Center for Research on Sustainable Forests. Available online at: http: // reserves-in-maine-initial-results-of-long- term-monitoring. Last accessed Aug. 31, 2022..

Kuehne, C.; J. Puhlick; A. Weiskittel; A. Cutko; D. Cameron; N. Sferra; J. Schlawin. 2018b. Metrics for comparing stand structure and dynamics between Ecological Reserves and managed forest of Maine, USA. Ecology 99(12): 2876. doi: https://doi.or g/10.1002/ecy.2500

Kuehne, C.; A. Weiskittel; A. Pommerening; R.G. Wagner. 2018c. Evaluation of 10-year temporal and spatial variability in structure and growth across contrasting commercial thinning treatments in spruce-fir forests of northern Maine, USA. Ann. For. Sci. 75: 20. doi:

Kuehne, C.; A.R. Weiskittel; R.G. Wagner; B.E. Roth. 2016. Development and evaluation of individual tree- and stand-level approaches for predicting spruce-fir re- sponse to commercial thinning in Maine, USA. For. Ecol. Manage. 376: 84–95. doi: .1016/j.foreco.2016.06.013

Kuehne, C.; A.R. Weiskittel; J. Waskiewicz. 2019. Comparing performance of contrasting distance- independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of Northeastern United States. For. Eco. Manage. 433: 205–216. doi: https://doi. org/10.1016/j.foreco.2018.11.002

Kuehne, C.; M.B. Russell; A.R. Weiskittel; J.A. Kershaw Jr.. 2020. Comparing strategies for representing individual-tree secondary growth in mixed-species stands in the Acadian Forest region. For. Ecol. Manage. 459: 117823. doi: j.foreco.2019.117823

Lam, T.Y.; J.A. Kershaw Jr.; Z.S.N. Hajar; K.A. Rahman; A.R. Weiskittel; M.D. Potts. 2016. Evaluating and modelling genus and species variation in height- to-diameter relationships for Tropical Hill Forests in Peninsular Malaysia. Forestry 90(2): 268-278. doi:

Lamlom, S.; R. Savidge. 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25: 381–388. doi: 34(03)00033-3

Leites, L.P.; A.P. Robinson; N.L. Crookston. 2009. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator. Can. J. For. Res. 39: 655–665. doi:

Li, R.; A.R. Weiskittel; J.A. Kershaw Jr.. 2011. Modeling annualized occurrence, frequency, and composition of ingrowth using mixed-effects zero-inflated models and permanent plots in the Acadian Forest region of North America. Can. J. For. Res. 41: 2077– 2089. doi:

Martin, A.R.; S. Gezahegn; S.C. Thomas. 2015. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can. J. For. Res. 45: 744–757. doi: cjfr-2015-0024

McGarrigle, E.; J.A. Kershaw Jr.; M.B. Lavigne; A.R. Weiskittel; M. Ducey. 2011. Predicting the number of trees in small diameter classes using predictions from a two-parameter Weibull distribution. Forestry 84(4): 431–439. doi: /cpr033

Niinemets, U.; F. Valladares. 2006 Tolerance to shade,¨ drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76: 521– 547. doi: 06)076[0521:TTSDAW]2.0.CO;2

Nunifu, T.K. 2009 Compatible diameter and height increment models for lodgepole pine, trembling aspen, and white spruce. Can. J. For. Res. 39(1): 180–192. doi:

Pinheiro, J.; D. Bates; S. DebRoy; D. Sarkar. 2012 nlme: Linear and nonlinear mixed effects models. R package version 3.1-103. Available online at: http://www.r- Last accessed Aug. 31, 2022.

Pokharel, B.; J.P. Dech. 2012. Mixed-effects basal area increment models for tree species in the boreal forest of Ontario, Canada using an ecological land classification approach to incorporate site effects. Forestry 85: 255–270. doi: /cpr070

Province of New Brunswick. 2005. Partial harvest permanent sample plot establishment manual. Internal report. 27 pp.

R Development Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: Last accessed Aug. 31, 2022.

Radtke, P.; D. Walker; J. Frank; A. Weiskittel; C. DeYoung; D. MacFarlane; G. Domke; C. Woodall; J. Coulston; J. Westfall. 2017. Improved accuracy of above- ground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90: 32– 46. doi: 047

Rahimzadeh-Bajgiran, P.; C. Hennigar; A. Weiskittel; S. Lamb. 2020. Forest potential productivity mapping by linking remote-sensing derived metrics to site variables. Remote Sens. 12: 2056. doi: https://doi.or g/10.3390/rs12122056.

Rehfeldt, G.E. 2006. A spline model of climate for the western United States. USDA For. Serv. Gen. Tech. Rep. RMRS-165.

Rijal, B; AR Weiskittel; JA Jr Kershaw. 2012a. Development of height to crown base models for thirteen tree species of the North American Acadian Region. For. Chron. 88(1): 60–73. doi: .5558/tfc2012-011

Rijal, B.; A.R. Weiskittel; J.A. Kershaw Jr.. 2012b. Development of regional height to diameter equations for 15 tree species in the North American Acadian Region. Forestry 85(3): 379–390. doi: https: //

Rowe, J.S. 1972. Forest regions of Canada. Publ 1300. Dept. Env. Can. For. Serv. 251 Ottawa. 172 pp.

Russell, M.B.; A.R. Weiskittel. 2011. Maximum and largest crown width equations for fifteen tree species in Maine. Nor. J. Appl. For. 28: 84–91. doi: https: //

Russell, M.B.; A.R. Weiskittel; J.A. Kershaw Jr. 2011. Assessing model performance in forecasting long-term individual tree diameter versus basal area increment for the primary Acadian tree species. Can. J. For. Res. 41: 2267–2275. doi: 1-139

Russell, M.B.; A.R. Weiskittel; J.A. Kershaw Jr. 2014. Comparing strategies for modeling individual-tree height and height-to-crown base increment in mixed-species Acadian Forests of northeastern North America. Eur. J. For. Res. 133: 1121–1135. doi: https: //

Salas-Eljatib, C.; A. Weiskittel. 2020. On studying the patterns of individual-based tree mortality in natural forests: a modelling analysis. For. Ecol. Manage. 475: 118369. doi: .2020.118369

Schroder, J.; K. von Gadow. 1999. Testing a new competition index for Maritime pine in northwestern Spain. Can. J. For. Res. 29: 280–283. doi: https://doi.or g/10.1139/x98-199

Thomas, S.C.; A.R. Martin. 2012. Carbon content of tree tissues: a synthesis. Forests 3: 332–352. doi:

Wagner, R.G.; R.S. Seymour. 2006. Commercial Thinning Research Network. In: 2004-2005 Cooperative Forestry Research Unit Annual Report. University of Maine, Orono, ME. pp. 34–41.

Weiskittel, A.R.; N.L. Crookston; P.J. Radtke. 2011a. Linking climate, gross primary productivity, and site index across forests of the western United States. Can. J. For. Res. 41: 1710–1721. doi: 10.1139/x11-086

Weiskittel, A.R.; S.M. Garber; G.P. Johnson; D.A. Maguire; R.A. Monserud. 2007. Annualized diameter and height growth equations for Pacific Northwest plantation-grown Douglas-fir, western hemlock, and red alder. For. Ecol. Manage. 250(3): 266–278. doi:

Weiskittel, A.R.; J.A. Kershaw Jr.; N.L. Crookston; C.R. Hennigar. 2017. The Acadian Variant of the Forest Vegetation Simulator: Continued development and evaluation. In: Keyser, C.E.; T.L. Keyser (Eds). Proceedings of the 2017 Forest Vegetation Simulator (FVS) e-Conference. e-Gen Tech Rep SRS-224. Asheville, NC: USDA For. Ser., Southern Research Station; p. 10–13.

Weiskittel, A.R.; J.A. Kershaw Jr.; C. Hennigar. 2013. Refinement of the Forest Vegetation Simulator individual-tree growth and yield model for the Acadian Region. In: 2012 Cooperative Forestry Research Unit Annual Report (SR Meyer, Ed). Univ. of Maine, Orono, ME. pp. 67–77.

Weiskittel, A.R.; C. Kuehne. 2019. Evaluating and modeling variation in site-level maximum carrying capacity of mixed-species forest stands in the Acadian Region of northeastern North America. For. Chron. 95(3): 171–182. doi: c2019-026

Weiskittel, A.; J. Frank; D. Walker; P. Radtke; D. Macfarlane; J. Westfall. 2015. Advancing individual tree biomass prediction: assessment and alternatives to the component ratio method. In: Stanton, S.M.; G.A. Christensen (Comps). Pushing boundaries: new directions in inventory techniques and applications: Forest Inventory and Analysis 2015 symposium. Gen. Tech. Rep. PNW-GTR-931: 125–132.

Weiskittel, A.; C. Kuehne; J.P. McTague; M. Oppenheimer. 2016. Development and evaluation of an individual tree growth and yield model for the mixed species forest of the Adirondacks Region of New York, USA. For. Ecosyst. 3(1): 26. doi: 10.1186/s40663-016-0086-3

Weiskittel, A.R.; R.G. Wagner; R.S. Seymour. 2010. Refinement of the Forest Vegetation Simulator, northeastern variant growth and yield model: Phase 1. In: 2009 Cooperative Forestry Research Unit Annual Report (S.R. Meyer, Ed). Univ. Maine, Orono, ME. pp. 44–48.

Weiskittel, A.R.; R.G. Wagner; R.S. Seymour. 2011b. Refinement of the forest vegetation simulator, northeastern variant growth and yield model: Phase 2. In: Mercier, W.J.; A.S. Nelson (Eds). Cooperative Forestry Research Unit. 2010 Annual Report. Univ. Maine. Orono, ME., 23–30.

Weiskittel, A.R.; D.W. Hann; J.A. Kershaw Jr.; J. Vanclay. 2011c. Forest growth and yield: Concepts and applications. Wiley-Blackwell, New York. 430p.

Wilson, D.; V. Monleon; A. Weiskittel. 2019. Quantification and incorporation of uncertainty in forest growth and yield projections using a Bayesian probabilistic framework: A demonstration for plantation coastal Douglas-fir in the Pacific Northwest, USA. Math. Comput. For. Nat. Res. Sci. 11: 264–285. Available online: l/article/view/11.3

Zuur, A.F.; E.N. Leno; N.J. Walker; A.A. Saveliev; G.M. Smith. 2009. Mixed effects models and extensions in ecology with R. New York, NY. Springer. p 574.


  • There are currently no refbacks.


© 2008 Mathematical and Computational Forestry & Natural-Resource Sciences