Quantification and Incorporation of Uncertainty in Forest Growth and Yield Projections Using A Bayesian Probabilistic Framework: A Demonstration for Plantation Coastal Douglas-fir in the Pacific Northwest, USA

Duncan Willson, Vicente Monleon, Aaron Weiskittel

Abstract


A Bayesian probabilistic modeling platform was used and evaluated for application in a relatively complex individual-tree growth and yield model for coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), which was expressed as a mixed discrete and continuous Bayesian Network for annual projections. The modeling platform used a common and open-source Bayesian analysis program (JAGS v3.3.0), and was sufficiently flexible to handle a relatively complex model structure; namely, a differential form, highly dynamic, recursive, hierarchical, non-linear system of equations with a rather complex error structure. This novel probabilistic modeling platform met certain desirable criteria, including (1) accurate and tractable projections that included full error propagation; (2) flexible and comprehensive analytic capabilities; (3) full consideration of hierarchical and multi-level model structures; (4) capacity for random effects calibration; (5) allowance of hypothesis testing and updating knowledge across different system components, simultaneously with different sources of information (i.e., new data); (6) computational efficiency; and (7) relatively simple implementation as demonstrated in a complied scripting language. Probabilistic projections of forest growth and yield included all sources of errors and uncertainty (e.g., estimated parameters, ...

Keywords


forest growth and yield, error propagation, model uncertainty, error budgets, individual tree growth models,

Full Text:

PDF SUP SUP2 SUP3

References


An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. textit{Ecological Modelling}. 229:25-36.

Arney, J. D. (1985). A modeling strategy for the growth projection of managed stands.~textit{Canadian Journal of Forest Research},~textit{15}(3), 511-518.

Arney, J.D. (2005). Forest Projection System. Forest Biometrics Institute. Portland, OR. http://www.forestbiometrics.com/

Arnold, J. G., {&} Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modelling.~textit{Hydrological Processes},textit{19}(3), 563-572.

Barton, D.N., Kuikka, S., Varis, O., Uusitalo, L., Henriksen, H.J., Borsuk, M., de la Hera, A., Farmani, R., Johnson, S. {&} Linnell, J.D. (2012). Bayesian networks in environmental and resource management.~textit{Integrated Environmental Assessment and Management},~textit{8}(3), 418-429.

Berger, J. O. (1985).~textit{Statistical decision theory and Bayesian analysis}. Springer.

Berger, J. O. (2000). Bayesian analysis: A look at today and thoughts of tomorrow.~textit{Journal of the American Statistical Association},~textit{95}(452), 1269-1276.

Borsuk, M. E., Stow, C. A., {&} Reckhow, K. H. (2004). A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. textit{Ecological Modelling},~textit{173}(2), 219-239.

Canham, C.D., J.J. Cole and W.K. Lauenroth. (2003). textit{Models in Ecosystem Science}. Princeton University Press. 504 pp.

Cao, V. (2000). Prediction of annual diameter growth and survival for individual trees from periodic measurements.~textit{Forest Science},~textit{46}(1), 127-131.

Capp'{e}, O., {&} Robert, C. P. (2000). Markov chain Monte Carlo: 10 years and still running!.~textit{Journal of the American Statistical Association},~textit{95}(452), 1282-1286.

Cieszewski, C. J. (2003). Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3$=$(axm)/(c$+$ xm-1), a simplified mixed-model and scant subalpine fir data.~textit{Forest science},~textit{49}(4), 539-554.

Clark, J. S., {&} Gelfand, A. E. (2006). A future for models and data in environmental science.~textit{Trends in Ecology {&} Evolution},~textit{21}(7), 375-380.

Crookston, N. L., {&} Dixon, G. E. (2005). The forest vegetation simulator: a review of its structure, content, and applications.~textit{Computers and Electronics in Agriculture},~textit{49}(1), 60-80.

Curtis, R. O., Clendenen, G. W., {&} DeMars, D. J. (1981).~textit{A new stand simulator for coast Douglas-fir: DFSIM user's guide}. US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 79 p.

Dennis, B., Brown, B. E., Stage, A. R., Burkhart, H. E., {&} Clark, S. (1985). Problems of modeling growth and yield of renewable resources.~textit{The American Statistician},~textit{39}(4), 374-383.

Epstein, J. M. (2006).~textit{Generative social science: Studies in agent-based computational modeling}. Princeton University Press.

Flewelling, J. W., {&} Pienaar, L. V. (1981). Multiplicative regression with lognormal errors.~textit{Forest Science},~textit{27}(2), 281-289.

Freni G., {&} Mannina G. (2010). Bayesian approach for uncertainty quantification in water quality modelling: The influence of prior distribution. textit{Journal of Hydrology, }392, (1-2), 31-39.

Fox, A., Williams, M., Richardson, A. D., et al.~(2009). The REFLEX project: comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data.~textit{Agricultural and Forest Meteorology}, 149(10), 1597-1615.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., {&} Rubin, D. B. (2013).~textit{Bayesian data analysis}. CRC Press.

Gertner, G. Z. (1990). The sensitivity of measurement error in stand volume estimation. textit{Canadian Journal of Forest Research}, 20(6), 800-804.

Gertner, G. (1991). Prediction bias and response surface curvature.~textit{Forest Science},~37(3), 755-765.

Gertner, G., Parysow, P., {&} Guan, B. (1996). Projection variance partitioning of a conceptual forest growth model with orthogonal polynomials.~textit{Forest Science}, 42(4), 474-486.

Green, E. J., MacFarlane, D. W., Valentine, H. T., {&} Strawderman, W. E. (1999). Assessing uncertainty in a stand growth model by Bayesian synthesis. textit{Forest Science},~45(4), 528-538.

Green, E. J., MacFarlane, D. W., {&} Valentine, H. T. (2000). Bayesian synthesis for quantifying uncertainty in predictions from process models.~textit{Tree Physiology}, 20(5-6), 415-419.

Hall, D. B., {&} Clutter, M. (2004). Multivariate multilevel nonlinear mixed effects models for timber yield predictions.~textit{Biometrics},~60(1), 16-24.

Hann, D. W., Olsen, C. L., {&} Hester, A. S. (1993).~textit{ORGANON user's manual}. Department of Forest Resources, Oregon State University.

Hann, D. W. (1999). An adjustable predictor of crown profile for stand-grown Douglas-fir trees.~textit{Forest Science},~45(2), 217-225.

Hann, D. W., {&} Hanus, M. L. (2004). Evaluation of nonspatial approaches and equation forms used to predict tree crown recession.~textit{Canadian Journal of Forest Research},~34(10), 1993-2003.

Hann, D. W., Marshall, D. D., {&} Hanus, M. L. (2006).~textit{Reanalysis of the SMC-ORGANON equations for diameter-growth rate, height-growth rate, and mortality rate of Douglas-fir}. Forest Research Laboratory, Oregon State University. Corvallis, OR

Harper, J. l., 1977. textit{Population biology of Plants}.~AcademicPress, London, UK.

Hobbs, N. T., {&} Ogle, K. (2011). Introducing data-model assimilation to students of ecology.~textit{Ecological Applications},~21(5), 1537-1545.

H{o}jsgaard, S., Edwards, D., {&} Lauritzen, S. (2012).~textit{Graphical models with R}. Springer.

Honer, T. G. (1965). A new total cubic foot volume function.~textit{The Forestry Chronicle},~textit{41}(4), 476-493.

Houtekamer, P. L., {&} Mitchell, H. L. (1998). Data assimilation using an ensemble Kalman filter technique.~textit{Monthly Weather Review},~126(3).

Johnson G.P. 2005. Growth model runoff II. Portland, OR: Growth Model Users Group. 61 p. Available online: www.growthmodel.org.

Kangas, A. (1996). On the bias and variance in tree volume predictions due to model and measurement errors.~textit{Scandinavian Journal of Forest Research}, 11(1-4), 281-290.

Kangas, A. S. (1997). On the prediction bias and variance in long-term growth projections.~textit{Forest Ecology and Management},~96(3), 207-216.

Kershaw, J.A., Weiskittel, A.R., Lavigne, M.B. and McGarrigle, E. (2017). An imputation/copula-based stochastic individual tree growth model for mixed species Acadian forests: a case study using the Nova Scotia permanent sample plot network. textit{Forest Ecosystems}, 4(1), 1-15.

Kremer, J. N. (1983). Ecological implications of parameter uncertainty in stochastic simulation.~textit{Ecological Modelling},~18(3), 187-207.

Larocque, G. R., Bhatti, J. S., Boutin, R., {&} Chertov, O. (2008). Uncertainty analysis in carbon cycle models of forest ecosystems: research needs and development of a theoretical framework to estimate error propagation.textit{Ecological Modelling},~219(3), 400-412.

LeMay, V. and Marshall, P. (eds), 2001. Forest Modelling for Ecosystem Management, Forest Certification and Sustainable Management. Proceedings of the Conference held in Vancouver BC, Canada, 12-17 August 2001. University of British Columbia, Vancouver, 506 pp.

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., {&} Schabenberger, O. (2006). SAS for mixed models. SAS Institute Inc.~Cary, NC

Lo, E. (2005). Gaussian error propagation applied to ecological data: post-ice-storm-downed woody biomass.~textit{Ecological Monographs},~75(4), 451-466.

MacFarlane, D.W., Green, E.J. {&} Valentine, H.T. 2000. Incorporating uncertainty into the parameters of a forest process model.~textit{Ecological Modelling},~134(1), 27-40.

Maguire, D. A., Bennett, W. S., Kershaw, J. A., Gonyea, R., {&} Chappell, H. N. (1991). Establishment report: Stand Management Cooperative silviculture project field installations.~College of Forestry, University of Washington, Seattle, WA, 42 p.

Marcot, B. G., Steventon, J. D., Sutherland, G. D., {&} McCann, R. K. (2006). Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation.~textit{Canadian Journal of Forest Research}, 36(12), 3063-3074.

McComb, W. C., Spies, T. A., {&} Emmingham, W. H. (1993). Douglas-fir forests: managing for timber and mature-forest habitat.~textit{Journal of Forestry},~91:31-42.

McGarrigle E, Kershaw JA Jr, Ducey MJ, Lavigne MB (2013) A new approach to modeling stand-level dynamics based on informed random walks: influence of bandwidth and sample size. textit{Forestry} 86, 377--389

Mitchell, K. J. (1975). Dynamics and simulated yield of Douglas-fir.~textit{Forest Science Monograph}, 17, 1--39.

Mowrer, H. T. (1991). Estimating components of propagated variance in growth simulation model projections.~textit{Canadian Journal of Forest Research},~21(3), 379-386.

Nielsen, T. D., {&} Jensen, F. V. (2009).~textit{Bayesian networks and decision graphs}. Springer.

O'Neill, R. V., {&} Gardner, R. H. (1979). Sources of uncertainty in ecological models. textit{Methodology in Systems Modelling and Simulation. }North-Holland, Amsterdam, pp. 447-463.

Parysow, P., Gertner, G., {&} Westervelt, J. (2000). Efficient approximation for building error budgets for process models.~textit{Ecological Modelling},~135(2), 111-125.

Pearl, J. (1988).~textit{Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference}. Morgan Kaufmann. San Francisco, CA.

Pearl, J. (2000).~textit{Causality: Models, Reasoning and Inference}~(Vol. 29). MIT Press. Cambridge, MA.

Pienaar, L. V., {&} Turnbull, K. J. (1973). The Chapman-Richards generalization of Von Bertalanffy's growth model for basal area growth and yield in even-aged stands.~textit{Forest Science},~19(1), 2-22.

Pienaar, L. V., {&} Shiver, B. D. (1986). Basal area prediction and projection equations for pine plantations.~textit{Forest Science},~32(3), 626-633.

Pinheiro, J. C., {&} Bates, D. M. (2000).~textit{Mixed effects models in S and S-PLUS}. Springer. New York, NY.

Plummer, M. (2003, March). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In:~textit{Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). }pp. 20-22.

R Development Core Team. (2012). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Raftery, A. E., Givens, G. H., {&} Zeh, J. E. (1995). Inference from a deterministic population dynamics model for bowhead whales.~textit{Journal of the American Statistical Association},~90(430), 402-416.

Robinson, A. P., {&} Wykoff, W. R. (2004). Imputing missing height measures using a mixed-effects modeling strategy.~textit{Canadian Journal of Forest Research}, 34(12), 2492-2500.

Running, S. W., {&} Gower, S. T. (1991). FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.~textit{Tree Physiology},~9(1-2), 147-160.

Scheller, R. M., Domingo, J. B., Sturtevant, B. R., Williams, J. S., Rudy, A., Gustafson, E. J., {&} Mladenoff, D. J. (2007). Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution.~textit{Ecological Modelling},~201(3), 409-419.

Smith, J. E., {&} Heath, L. S. (2001). Identifying influences on model uncertainty: an application using a forest carbon budget model.~textit{Environmental Management}, 27(2), 253-267.

Stow, C. A., Reckhow, K. H., {&} Qian, S. S. (2006). A Bayesian approach to retransformation bias in transformed regression.~textit{Ecology},~87(6), 1472-1477.

Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling.~textit{Ecological Modelling},~textit{203}(3-4), 312-318.

Uusitalo, L., Lehikoinen, A., Helle, I., {&} Myrberg, K. (2015). An overview of methods to evaluate uncertainty of deterministic models in decision support.~textit{Environmental Modelling {&} Software},~textit{63}, 24-31.

Villa, F., Ceroni, M., Bagstad, K., Johnson, G., {&} Krivov, S. (2009). ARIES (Artificial Intelligence for Ecosystem Services): A new tool for ecosystem services assessment, planning, and valuation. In:~textit{11Th annual BIOECON conference on economic instruments to enhance the conservation and sustainable use of biodiversity, conference proceedings. }Venice, Italy.

Weiskittel, A. R., Garber, S. M., Johnson, G. P., Maguire, D. A., {&} Monserud, R. A. (2007). Annualized diameter and height growth equations for Pacific Northwest plantation-grown Douglas-fir, western hemlock, and red alder.~textit{Forest Ecology and Management},~250(3), 266-278.

Weiskittel, A.R., Kershaw Jr, J.A., Crookston, N.L., {&} Hennigar, C.R. (2017). The Acadian Variant of the Forest Vegetation Simulator: Continued development and evaluation. In: Keyser, C. {&} Keyser, T., Eds. Proceedings of the 2017 Forest Vegetation Simulator (FVS) e-Conference. US Forest Service. 10-13 pp.

Weiskittel, A.R., Kuehne, C., McTague, J.P., {&} Oppenheimer, M. (2016a). Development and evaluation of an individual tree growth and yield model for the mixed species forest of the Adirondacks Region of New York. USA. textit{Forest Ecosystems}, 3, 26.

Weiskittel, A.R., Wilson, D.S., Kuehne, C. (2016b). Forecasting Douglas-fir response to forest management: evaluating alternative approaches and growth model projection uncertainty. 2016 Western Mensurationists Annual Meeting. Skamania Lodge, Stevenson, WA. Available online at http://www.westernmensurationists.org/m2016/Weiskittel_Aaron.pdf

Weiskittel, A.R., Hann, D.W., Kershaw Jr., J.A., {&} Vanclay, J.K. (2011). Forest Growth and Yield Modeling. Wiley. 430 pp.

Wikle, C. K. (2003). Hierarchical Bayesian models for predicting the spread of ecological processes.~textit{Ecology},~84(6), 1382-1394.

Willows, R.I. {&} Connell, R.K. (Eds.). (2003). Climate adaptation: hfill Risk, uncertainty and decision-making. newpage UKCIP Technical Report. UKCIP, Oxford, UK.

Wilson, D. S., {&} Puettmann, K. J. (2007). Density management and biodiversity in young Douglas-fir forests: challenges of managing across scales.~textit{Forest Ecology and Management},~246(1), 123-134.

Wilson, D. S., Stoddard, M. A., {&} Puettmann, K. J. (2008). Monitoring amphibian populations with incomplete survey information using a Bayesian probabilistic model.~Etextit{cological Modelling},~214(2), 210-218.

Wilson, D. S., Anderson, P. D., {&} Puettmann, K. J. (2009). Evaluating the consistency of understorey vegetation response to forest thinning through synthetic analysis of operational-scale experiments.~textit{Forestry},~82(5), 583-596.


Refbacks

  • There are currently no refbacks.


   

© 2008 Mathematical and Computational Forestry & Natural-Resource Sciences