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A region can conceptually be tessellated into polygons at different scales or resolutions. Likewise, 
samples can be taken from the region to determine the value of a polygon variable for each scale. 
Sampled polygons can be used to estimate values for other polygons at the same scale. However, 
estimates should be compatible across the different scales. Estimates are often required for zones 
within a region, where a region might be a state and counties could be the zones. A method is 
developed for estimating high-resolution (pixel) values that are constrained to be compatible 
with results for lower resolution values. The high-resolution values are constrained to sum to totals 
for zones within a region, where the totals are being simultaneously estimated from measurements 
taken at a different scale. If the zone estimates are unbiased, then the pixel-based estimates for the 
zone will be less biased. Sums of pixels in arbitrary polygons are thereby constrained to approach 
unbiased estimates. Approximate variance estimators are developed for the summed pixel estimates. 
Two example applications are provided. The first example is based on simulated data and verifies 
that the proposed variance estimators give reasonable results. The second example estimates the 
volume in a circle around a possible mill site in North Carolina. This example uses publicly available 
US Forest Service inventory data and simulated inventory data that the ~nill would provide. 

Introduction 

Thematic maps are relatively easy to make and 
provide useful visual impressions about the distri- 
bution of various categories of land use or natu- 
ral resources. Estimates derived from these maps 
can be adjusted to have known variance and bias 
properties (Card, 1982; Story and Congalton, 
1986; Green e t  al., 1993; Van Deusen, 1994, 
1996). 

The approach of making thematic maps and 
adjusting derived summary statistics has been 
thoroughly researched. Less well studied is the 
idea of adjusting pixel values using measure- 
ments taken at a different scale so that map-based 
estimates of means and totals are unbiased. This 

would allow the user to draw a polygon on the 
map and obtain reliable estimates by summing 
the pixels contained in the polygon. Methods 
are developed here to adjust the pixel estimates 
to conform to larger zones whose totals are 
based on sample data taken at a different scale. 
The methods developed here are for quantitative 
pixel values rather than categorical values. These 
methods would therefore be useful for maps that 
depict tree volume but not for tree species. 

This generalizes work in Roesch and Van Deusen 
(1 995) where pixel-based estimates were corrected 
according to externally derived summary statistics. 
In that study, large 1-km pixel values and USDA 
Forest Service inventory and analysis (FIA; US De- 
partment of Agriculture, Forest Service, 2005) data 
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are used to improve estimates based on 30-m pix- 
els. We extend this idea to n~ultiple scales or levels. 
The methods could also be applied to inventories 
where not all levels involve remotely sensed data. 

The next section outlines an example that is de- 
signed to motivate the need for the nlethods being 
developed here. This is followed by a section on 
notation and a method for stochastic adjustment 
of pixel values to correspond to estimated zone 
totals obtained at a different scale. This ensures 
that the sum of all pixels in a zone will be compat- 
ible with other estimates of zone totals. A section 
on variance estimation outlines procedures for es- 
timating the variance of sums of pixels in arbitrary 
polygons. 'The method is tested with an application 
based on simulated data. This demonstrates that 
the proposed variance estimators and constraint 
methods perform as expected. A second example 
addresses the practical issue of combining com- 
pany inventory data with FIA data to obtain esti- 
mates in a procurement circle around a mill. This 
is discussed in more detail in the next section. 

The mill has its own plots, which could also be 
used to estimate mean volume in the circle. How- 
ever, these plots might not have been measured 
recently or may be based on photo interpretation 
so the mill feels uncomfortable using them as the 
only basis for the estimate. The procedures devel- 
oped here provide a method to combine the FIA 
and the mill plots to obtain estimates that may be 
more reliable than using either data source alone. 

A mixed estimator is developed (Theil, 1971) 
that will constrain the equation fit to the mill data 
to give means that are similar to the FIA means 
in specified zones. In the second example applica- 
tion, these zones are the four quadrants of the 
mill circle. The constraint reflects the notion that 
FIA data provide an unbiased and accepted esti- 
mate for a state. Therefore, volume esti~nates for 
the mill circle should be expected to conform to 
FIA estimates. Our method is applied to FIA and 
NLCD data for central North Carolina to dem- 
onstrate its efficacy in the example application 
section. 

Motivating example Notation and equations 

An important justification for these methods is 
the need to estimate the volume of wood within a 
certain distance of a paper mill, i.e. a mill circle. 
FIA data are available for the states that contain 
the mill circle, but the plot locations are not avail- 
able due to privacy issues. Suppose that another 
set of inventory or photo plots is available to the 
mill with exact locations so the plot values can 
be n~odelled from remote sensing spectral band 
values. Alternatively, a simple model could be 
developed that relates the plot values to x and y 
coordinates. 

One method to estimate the total volume in a 
circle or polygon would be to classify 30-m pixels 
as forest or non-forest for the circle. Then, the 
forested pixels whose centres are contained in 
the circle can be counted and the forested area 
in the circle is readily computed. Now, multi- 
ply the circle's forest area estimate by the mean 
volume estimate from plots in the circle to get 
the total volume estimate. This could be accom- 
plished with National Land Cover Data (NLCD) 
(Vogelrnann et nl., 2001) to compute forest area 
and FIA plots to compute mean volume or bio- 
mass in the circle. 

The development here focuses on the common 
situation where there are two scales, but the re- 
sults generalize easily to multiple scales. The basic 
data come in the form of four vectors for each 
level or scale: La = (Xa, Ya, Ma, 2') and L~ = (xbt 
yb, Mh, Zb), where the a and b superscripts denote 
the level or scale. Xb denotes an Nb x pb matrix of 
concomitant variables that should be available for 
all units at the b scale. Yh denotes the vector 
that contains the variable of interest for the study 
and Mh is a measurement indicator vector that 
contains 0s when the y-measurement is not avail- 
able and 1s otherwise. The number of observa- 
tions is nl,, which is the number of 1s in Mh. There 
are Kh zones labelled 1,. . .,Kh and the vector Zh 
contains labels to indicate the zone membership 
of each unit at level 6. The definitions of the four 
vectors at level a correspond to the definitions for 
level b. Another level could be added by defining 
LC analogously to La and Lh. Throughout, we 
denote a scalar with a subscript, e.g. Nb, and a 
matrix or vector with a superscript, e.g. Xb. Vec- 
tors or matrices that contain the complete data for 
a level are in upper case, e.g. Y O ,  whereas lower 
case is used for the observed data, e.g. yh. 
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0 bservirtion equatiolzs Is to pick off the rows of X that are involved in 

The measurement indicator allows us to cre- the constraint, and has 0s elsewhere. Therefore, 

ate vectors that correspond to observed values J ~ X " " ~ '  gives the sums of all a-level elements in- 
volved in the constraint. Conversion factor vec- L:,bs = (xd, y L * ) ,  where each observed vector has 72, 
tors, ca and cl), are needed to put the constraint rows. The observed values are used to estimate 
sums at the different levels into compatible units. unknown parameters, but the full X-matrices are 
It makes sense to have that all prediction equa- used to enforce constraints. Assume that the fol- 
tions give results in the same units, e.g. volume per lowing equations describe the observed data: 
hectare. However, level a might consist of 30-111 

Y'l = xflp" + c" 

and 

(1) pixels with 1-km pixels at level 6. Summing per 
hectare volume predictions for the different size 
pixels will not result in correct zone totals without 
the conversion factors. A simple conversion when 

(2) the constraint includes all observations is to let cZ 
= lln,, and = llnh, so the means at each level are 

where p" and pb are vectors of unknown coeffi- constrained. 
cients. The error vectors, ea and eb, have mean For some problems, the zones in level do 
zero and are assumed to have a joint variance- not completely tessellate the region or include 
covariance matrix of the form areas that should be ignored. This would leave 

a number of level-a elements without a zone 
(3) b membership. This implies that the membership 

vector, Za, can include missing values. The sum- 

In most cases, C" = C$IU with zb having a sirni- mations occurring in equation (4) must exclude 

lar form, i.e. the elements within ea and eb are these elements at level a by putting a 0 in the cor- 

independent. Likewise, eu and eh will often be in- responding position in p. The second example 

dependent and thus, z(lb = 0. demonstrates a typical situation where this oc- 
curs. If only forested pixels are of interest, then 

The constraints that cause summations across 
different levels to be conlpatible are imposed 
using mixed estimation methods (Thcil, 1971). 
The constraints are put in the form of ecluations 
that are solved si~nultaneously with the observa- 
tion equations, equations (1) and (2). One vec- 
tor constraint equation is required for a two-level 
problem 

where X represents the full X-matrix (not just 
observed rows). The Qb x 1 error vector, v, has 
one element for each constraint and the variancc- 
covariance matrix E(uu') = crtl a .  The error vec- 
tor, u, is uncorrelated with the observation equa- 
tion errors. The r-vector allows for the possibility 
that the zone sums are not equal at the different 
levels, but usually r = 0. The ]-matrices have Qb 
rows and enough columns to be conformable 
with the matching X-matrix. The qth row of J has 

the non-forest pixels must be excluded from the 
computations even though they are physically 
within the zones. 

The number of constraints is limited by the 
number of parameters being estimated. In gen- 
eral, Qb  5 pa + pb. There cannot be more con- 
straints than the number of unknown parameters 
in pa and pb. 

Estimation 

Development of estimators is facilitated by creat- 
ing more compact matrix notation for the obser- 
vation and constraint equations given above. The 
first step is to write the combined equations as 

where 0 is a matrix of 0s and 
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Carry the compaction into matrix notation one user, i.e. decrease 0; if the difference in the means 
step further to get is too large. This puts more weight on the con- 

straint. 

[:] = [:]p+ [;I* (7) A more objective approach is to find the value, 
bi, that minimizes the log-likelihood function 

Now, the estimator for p can be written in stan- 
dard mixed estimator form (Theil, 1972) as 

The approximate covariance matrix of P is 
- -. 1 

Variance component estimation 

For most applications of these methods, there will 
only be a few unknown variance components to 
estimate. The observation equation components 
are 0; and a:. They can be estimated iteratively 
using 

The minimization of L could be done with a 
simple grid search. This can be included in the 
iterative process of estimating p, a: and 0; as an 
additional step. An initial value for 0; is required 
to start the iterations. 

The likelihood approach will often be appro- 
priate for finding an objective value of 6:. How- 
ever, the overall purpose of the mixed estimator 
is to control the bias in estimates across different 
zones. The method of reducing 0; until the zone 
totals are sufficiently similar across levels can also 
be employed with the recognition that it yields a 
subjective result. 

and 

where W, denotes an unconstrained estimate. 
The first iteration requires a starting value for 

0: an$ oi, e.g. set them both to 1.0. Then, esti- 
mate pu with equation (8), where G:= m, i.e. set 
0: to a very large number, say 10000. Then es- 
timate 05 and CJ: with equations (10) and (1 1). 
Cycle through this process until convergence. The 
unconstrained estimate of p ensures that the es- 
timates of a: and oi are unbiased. Then get the 
constrained estimate of p in a second step using 
the unconstrained estimates of o: and a;. 

The constraint equation variance component, 
OZ;, is sonlewhat more difficult to estimate. One 
approach would be to adjust 0: until the con- 
straint is met to within a user-specified tolerance. 
For example, a typical constraint would be to 
ensure the scaled mean over all level-a units is 
nearly the same as the mean of all level-b units 
in the same zone. 'The value of 0: can be adjusted 
until these means are close enough to satisfy the 

Variarzce of zone sums 

A method is needed to estimate the variance of 
the sum of high-resolution elements contained 
within an arbitrary polygon drawn on the map. 
These elements might be 30-m pixels from satel- 
lite data or hexagons that tessellate the region. 
Begin by considering the estimated sum of level-a 
elements over Qb zones 

where p' would now contain Qb rows, one for 
each zone of interest. The qth row of Ja would 
have 1s to pick off the level-a elem5nts in zone 
q and 0s elsewhere. The variance of Sa can be es- 
timated by 

where var(Bff) is the p,  x p, covariance matrix 
from the upper left partition of Var(P) in equa- 
tion (9). 

The variance estimate in equation (14) gives the 
variance of the expected zone sums. It would be 
more realistic to treat the sums in equation (13) 
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as predictions since nearly all the level-a values 
are being estimated. The variance of predicted 
surris (Theil, 197'1) is 

Applications 

The methods for multilevel constrained estimation 
apply to a range of problems. The first example 
applies the methods to an entirely simulated data- 
set that is meant to emulate a two-level problem, 
where level a is based on satellite data and level b 

x6 = [ x,,,,, + 5(zb - 1) + e** 1 I 2, 

where P b  = 2P,, - N(O,O.Ix ,,,,,) and 
el - N(0,0.2xml,). The vector XI,  has the same 
mean as X, except that it is divided by 2. Yt, is 
generated from the same equation as Y,, except 
Pb = 2P, to compensate for Xb being divided by 2. 
Now, the objective of the siinulatian is to test the 
ability of the method to constrain the zone sums 
across levels, to rediscover pa and Pt, and to deal 
with the bias in level a. All level-b observations 

uses FIA data. There is currently 1nuc11 interest in are used in the analysis. 
combining satellite imagery with FIA data for im- A constraint is employed to make the level-a 
proved estimation (McRoberts et al., 2002). The Inean estimate be equal to the level-b Inean. This 
primary objective of the first example is to dem- constraint enforces the following relationship: 
onstrate that the method can recover the known 
parameters that were used to generate the data. v = PiJb - PoJ - PI,Xa, (16) 

The second example uses NLCD data and FIA 
data to demonstrate a simple application of these where Plb is the level-b slope parameter, X h  is the 
methods to a more realistic dataset and problem. mean level-b x-value, Po,z is the level-a intercept 
The objective is to estimate the total -dry bio- eararneter, PI, is the level-a slope parameter and 
mass in a circle (81 km radius) in central North X a  is the mean level-a x-value. 'The constraint 
Carolina. variance is controlled by the value of a,, which is 

initially set to 10 000 so the constraint has almost 
110 effect on the results. 

This exercise begins by generating N, = 10000 Results for Example 1 
members of the level-a population using the fol- First, we set bias, = 0 and run the simulation to 
lowing functions: verify that the correct values for p, and Pb are re- 

covered. The model for the level-a observations 
XL' = x,,~ + 5(ZJ - 1) + ex', has an intercept and a slope, so the intercept can 

account for the bias term. The level-6 observa- 
Y" = P,Xa + ey' + bias,, tions use a model with a slope and no intercept. 

The simulation results (Table 1 ) for 1000 itera- 
where x,,, = 100, eYo - N(0,0.04xm,,,), Pa = 3.0 tions indicate that the slope parameters were ac- 
and eYu - N(0,0.2x,,!,,). The bias, term is added to curately estimated and that the variance esrimate 
ensure that the level-a observations are biased rel- from equation (9) is similar to the simulation 
ative to the level-b observations. This bias causes variance for the estimated parameters. The mean 
zone totals across the two levels to be unequal of both Y, and Yb is -517, which makes the level-a 
without a constraint. Both levels have observa- intercept relatively close to zero, as it should be 
tions in the same 30 zones labelled 1, ..., 30 in the with no added bias. 
zone label vectors, Za and Z" Each zone gets an Repeating the simulation with bias, = 20 gives 
equal number of the observations at each level. A insight (Table 2) into the value of constraints to 
sample of size n, = 20 is drawn froin the 10 000- control bias. This run is first made without con- 
rnember level-a population. straints, i.e. a,, = 10000. The results show that 

There are NJ, = 300 level-b observations (nh = the level-a intercept reflects the bias term and the 
10) generated as variance of parameter estimates from equation (9) 
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Tilble 3: Results of two-level simulation application with bias,, = 20 and o,, = 1 

Parameter Equation (9) Simulation 

The average is shown for along with the estimate of ~ a r ( b )  from equation (9) and the simulation. 

Figztre I .  Central North Carolina mill circle (81 knl radius). The circle is black, non-forest is light grey and 
forest is dark grey. 

error vector ard the unknown coefficients are 
a,, j = 0, 1, 2. The low-resolution dataset is from 
the FIA plots in the bounding box. The FIA dry 
biomass values are simply modelled as a mean, 
i.e. 

There are four model coefficients being esti- 
mated, which allows for four constraints in the 
R-matrix. We decided to constrain the pixel 
means in each quadrant to be similar to the 
overall FIA mean biomass value. The quadrants 
are the north-east, north-west, south-east and 
south-west sections of the bounding box. This 
will ensure that the estimate within the mill cir- 
cle will be compatible with the FIrZ data. The 
mill circle estimate will be derived in two steps. 
First, count the forested pixels whose centres 
fall inside the circle. Then, compute the forest 
area in the circle using the fact that each for- 
ested pixel represents 900 m b f  forest. Second, 

compute the mean biomass estimate of all pixels 
in the circle. Multiply the estimates from steps 
1 and 2 to get an estimate of total biomass in 
the circle. 

Analysis details for Example 2 
This analysis was done using GRASS (2005) 
for manipulating the NLCD data and the 
R-project software (R Development Core Team, 
2007) for implementing the mixed estimator. All 
29 million NLCD pixels are incorporated into the 
4 x 4 constraint matrix (equation 6 ) ,  which may 
be the most computationally demanding part of 
this exercise. Each row of the R-matrix corre- 
sponds to one of the quadrants of the mill circle 
bounding box. The non-forest pixels are excluded 
when the R-matrix is formed since they are not 
used in the computations and should have no bio- 
mass by definition. 

The analysis is not computationally demand- 
ing, after the R-matrix (equation 6 )  is computed. 
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It involves the 2000 simulated mill plots, the 918 
FIA plots and the 4 x 4 R-matrix. The data prepa- 
ration can be demanding, but the application of 
the mixed estimation steps will be quite similar 
across problems. 

The maximum likelihood method (equation 
12) is employed to find the constraint variance 
parameter. It is appropriate for this example be- 
cause it provides an objective result. It would not 
be clear how to set this parameter's value oth- 
erwise. There should be some similarity between 
the quadrant estimates and the FIA plot estimate 
for the bounding box, but they should not neces- 
sarily be identical. The maximum likelihood esti- 
mate provides a justifiable result. 

Results for Exanzple 2 
The unconstrained results from fitting equation 
(17) indicate (Table 4) that there is a trend in the 
data in both the X and Y directions. The intercept 
is not significant probably due to the artificial na- 
ture of the pseudo-biomass variable. 

The mixed estimation process was applied 
using the maximum likelihood estimate for the 
constraint variance parameter. This resulted in 
slightly modified coefficient estimates (Table 5) .  

'The total (pseudo) biomass in the mill circle 
can now be calculated by computing the average 
biomass value for all forested pixels in the mill 
circle with equation (17) and the mixed estimator 
coefficients (Table 5). These coefficients result in 

estimates of total dry biomass in tons per acre 
(1 ton acre-l = 2.2417 tonnes ha-l). Depending 
on the units selected for the final result, the 30-m 
pixels each represent either 0.22239395 acres or 
0.09 ha. 

Conclusions 

A method was developed for simultaneously es- 
timating population parameters from data taken 
at different scales. An example application used 
simulated data where the high-resolution data 
could represent satellite-derived pixels and the 
low-resolution data might be from a forest inven- 
tory. This example indicated that these methods 
provide reliable variance estimates and help to 
ensure compatibility of estimates across scales. A 
second example demonstrated how these meth- 
ods could be used to estimate the volume of wood 
in a mill circle by combining photo plots with FIA 
data. The methods developed here are not diffi- 
cult to implement, but require the ability to per- 
form some customized statistical analysis. 

The motivation for this work was to develop 
a method for combining data measured at differ- 
ent scales or resolutions. However, this method 
could generally be used to combine data from 
different sources. For example, two invento- 
ries of the same area could be combined. For 
this purpose, the mixed estimator is similar in 

Tilhle 1: Unconstrained results from fitting the pseudo-biomass data to equation (1 7) 

Coefficient Estimate Standard Error t-value Pr(>ltl) 

Intercept -1.374 x loto1 1.843 x 1 Ot0l -0.746 0.456 
X -9.054 x 10-O5 9.326 x loq6 -9.708 <2. x 10-16 
2: 3.219 x 10-O4 8.819 x 10-06 13.829 <2e x 1 0-l6 

AJultiyle R-squared: 0.1165, Adjusted R-squared: 0.1156. F-statistic: 131.6 on 2 and 1997 df, P-value: c2.2 x lo-''. 

Table .S: Mixed estimator results from fitting the pseudo-biomass data to equation (17) 

Coefficient Estimate Standard Error t-value Pr(>ltl) 
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Conf i ic t  of Interest  S ta t emen t  

None declared. 

sessment: a user's perspective. Pho tog~amm.  Eng. 
Remote Sens. 59, 635-639. 

Theil, H. 1971 Principles of  Ecorzometrics. Wiley, 
New York. 

US Department of Agriculture, Forest Service 2005 
Forest Inventory and Analysis National Core Field 

References Gztide, Volume I :  Field Data Collection Procedures 
for Phase 2 Plots, Version 3.0. US Department of 

Card, D-H- 1982 Using know11 map category mar- Agriculture, Forest Service, Washington Office. Inter- 
ginal frequencies to improve estimates of thematic nal report. On file with: US Department Agricul- 
InaP accuracy. PhotOgrfimm- Eng- Renzote Sens. 48, ture, Forest Service, Forest Inventory and Analysis, 
43 1-439. Rosslyn Plaza, 1620 h'orth Kent Street, Arlington, 

GRASS Development Team 2005 Geographic Re- VA 22209. 
sources Analysis Support System (GRASS)  2 .  Gmss  van Deusen, P.C. 1994 Correcting bias in change es- 
Prog~ammer's M U ~ Z U U ~ .  ITC-irst, Trento, Italy. http:ll timates from thematic maps. Remote Sense Erllliron. 
grass.itc.it/devel/index.php. 50.57-73. 

Green, E.J. and Strawderman, W.E. 1990 Combining 
inventory estimates with possibly biased auxiliary 
information. For. Sci. 36, 688-699. 

Green, E.J., Strawderman, W.E. and Airola, T.M. 1993 
Assessing classification probabilities for thematic 
maps. Photogramnz. Eng. Renzote Sens. 59, 635-639. 

hlcRoberts, R.E., Nelson, M.I>., Wendt, D.C. 2002 
Stratified estimation of forest area using satellite im- 
agery, inventory data, and the k-nearest neighbors 
technique. Remote  Sens. Erzviron. 82, 4.57-468. 

Van Deusen, P.C. 1996 Unbiased estimates of class 
proportions from thematic maps. Photogramm. Ertg. 
Rernote Sens. 62,409-41 2. 

Vogelmann, J.E., Howard, S.M., Yang, I,., I,arson, C. 
R., Wylie, R.K., and Van Driel, J.N. 2001 Comple- 
tion of the 1990s National Land Cover Data Set for 
the conterminous United States. Photogranzm. Eng. 
Renzote Sens. 67, 650-662. 

Received 2 Febrztary 2007 


