Automated Estimation of Forest Stand Age Using Vegetation Change Tracker and Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
Bechtold, W.A., and P.L. Patterson. 2005. The enhanced Forest Inventory and Analysis Program - national sampling design and estimation procedures. USDA For. Serv. Gen. Tech. Rep. SRS-GTR-80. 88 p. Last accessed online on Feb. 10, 2016, at: http://www.srs.fs.usda.gov/pubs/20371.
Geosystems, L. 2004. ERDAS imagine. Atlanta, Georgia.
Hijmans, R.J. 2015. raster: Geographic data analysis and modeling. R package version 2.4-18. Last accessed online on Jan. 19, 2016, at: http://CRAN.R-project.org/package=raster.
Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and Megown, K. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing. 81(5):345-354. Last accessed online on Feb. 10, 2016, at: http://www.mrlc.gov/nlcd2011.php.
Huang, C., L.S. Davis, and J.R.G. Townshend. 2002. An assessment of support vector machines for land cover classication. International Journal of Remote Sensing. 23(4):725-749. Last accessed online on Feb. 10, 2016, at: http://sta.glcf.umd.edu/shatalin/WEBSITE3/library/publication.shtml.
Huang, C., S.N. Goward, J.G. Masek, N. Thomas, Z. Zhu, and J.E. Vogelman. 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment. 114:183-198. Last accessed online on Feb. 10, 2016, at: http://www.sciencedirect.com/science/article/pii/S0034425709002685.
Meyer, D., E. Dimitriadou, K. Hornik, A. W, eingessel, and F. Leisch. 2015. Misc functions of the Department of Statistics, Probability Theory Group (formerly: E1071), TU Wien. R package version 1.6-7. Last accessed online on Jan. 19, 2016, at: http://CRAN.R-project.org/package=e1071.
Miles, P.D. 2016. Forest Inventory EVALIDator web-application Version 1.6.0.03. USDA For. Serv., Northern Research Station, St. Paul, MN. Last accessed online on Jan. 26, 2016, at: http://apps.fs.fed.us/Evalidator/evalidator.jsp.
Pal, M., and P. Mather. 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing. 26:1007-1011. Last accessed online on Feb. 10, 2016, at: http://www.tandfonline.com/doi/abs/10.1080/01431160512331314083.
R Core Team. 2015. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Last accessed online on Jan. 19, 2016, at: https://www.R-project.org/.
Therneau, T., B. Atkinson, and B. Ripley. 2015. rpart: Recursive partitioning and regression trees. R package version 4.1-10. Last accessed online on Jan. 19, 2016, at: http://CRAN.R-project.org/package=rpart.
VanDerWal, J., L. Falconi, S. Januchowski, L. Shoo and C. Storlie. 2014. SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R package version 1.1-221. Last accessed online on Jan. 19, 2016, at: http://CRAN.R-
project.org/package=SDMTools.
Venables, W.N., and B.D. Ripley. 2002. Modern applied statistics with S, 4th ed. Springer, New York.
Zhao, F., C.Q. Huang, and Z.L. Zhu. 2015. Use of Vegetation Change Tracker and Support Vector Machine to Map Disturbance Types in Greater Yellowstone Ecosystems in a 1984-2010 Landsat Time Series. Ieee
Geoscience and Remote Sensing Letters. 12(8):1650-1654. Last accessed online on Feb. 10, 2016, at: http://www.usgs.gov.
Refbacks
- There are currently no refbacks.
© 2008 Mathematical and Computational Forestry & Natural-Resource Sciences