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Abstract. Recent advances in LiDAR (Light Detection and Ranging) technology have allowed for the
remote sensing of important forest characteristics to be more reliable and commercially available. Studies
have shown that this technology can adequately estimate forest characteristics such as individual tree
locations, tree heights, and crown diameters. These values are then used to estimate biophysical properties
of forests, such as basal area and timber volume. This study assessed the capability of a commercially
available program, Tiffs (Toolbox for Lidar Data Filtering and Forest Studies), to accurately estimate
forest characteristics, as compared to data collected at the plot level using traditional timber sampling
methods. We found a high, positive correlation coefficient (r)of 0.8223 for tree heights, between the
LiDAR-derived measurements and the field measurements, which is somewhat promising. However,
we found low correlations in tree count per plot (r = 0.1777) and tree crown radius (r = 0.1517), be-
tween the LiDAR-derived measurements and the field measurements, results which are far from satisfactory.
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1 Introduction

Remote sensing is an alternative method for obtain-
ing spatial information, as compared to field-based mea-
surements, which can be highly accurate but are time
intensive and costly (Hyde et al. 2006). Aerial photogra-
phy and satellite imagery have been implemented as re-
mote sensing techniques for decades; however, they may
require time-consuming and labor-intensive photogram-
metric processes (Hyde et al. 2006). Further, these
processes produce only two-dimensional images, with-
out the resolution and accuracy sufficient for obtaining
three-dimensional information for vegetation (Omasa et
al. 2007, Lefksy et al. 2002). Alternatively, LiDAR sys-
tems directly measure not only x and y coordinates, but
z coordinates as well, increasing the accuracy of mea-
surements and extending spatial analysis into the third
dimension (Lefsky et al. 2002).

LiDAR (Light Detection and Ranging) is an innova-
tive remote sensing tool that essentially measures dis-
tance with a laser. Distance is determined by measuring
the travel time between an emitted and received pulse
of light (Wehr and Lohr 1999). The travel time is the
amount of time that elapses between the emission of a

light pulse, the reflectance of that pulse off of an object,
and its recovery by the sensor (Wehr and Lohr 1999;
Lim et al. 2003). These near-infrared laser pulses can
be emitted at a high rate, exceeding 100,000 per second
(Reutebuch et al. 2005, Evans et al. 2006). The pulse
rate for the LiDAR system used in this study was 150
kHz. This technology is mounted to an aircraft in com-
bination with an oscillating deflecting mirror to divert
the beam to produce a wide-scan range and a Position
and Orientation System (POS) to determine the loca-
tions of reflective surfaces (Wehr and Lohr 1999). The
POS consists of a differential Global Positioning System
(dGPS) that extrapolates the position of the sensor, and
an Inertial Measurement Unit (IMU) to account for roll,
pitch, and yaw in the aircraft (Wehr and Lohr 1999, Lim
et al. 2003, Simard et al. 2003, Evans et al. 2006). The
result is a set of points that give the horizontal and verti-
cal position of each recorded return in Earth-referenced
coordinates (Evans et al. 2006). This is also referred to
as a point cloud. Wehr and Lohr (1999) provided a more
in-depth exploration into how LiDAR systems work.

Several different systems are currently available to ob-
tain LiDAR data, and new methods for processing the
data, particularly software, are being implemented ev-
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Figure 1: Location of the SFA Experimental Forest with color-infrared imagery.

ery day. With so many combinations of data acquisition
and analysis, results of obtaining forest characteristics
tend to vary. In the past, LiDAR was used mainly for
terrain analysis and any returns of above-ground objects
or trees were considered unwanted noise. Reutebuch et
al. (2005) called for specifications and standards for Li-
DAR missions to allow for optimal remote sensing for not
just terrain, but vegetation as well. As these standards
are being implemented, studies need to be designed to
evaluate the effects they have on accuracy.

The recent advances in LiDAR applications have al-
lowed for the remote sensing of important forest char-
acteristics to be increasingly accurate, affordable, and
commercially available. Studies have shown this tech-
nology to be feasible in obtaining enough information to
adequately estimate biophysical properties of forests, in-
cluding stand volume and basal area (Means et al. 2000).
Traditionally, these properties are estimated from field
measurements, which are costly and time intensive to
obtain, or 2-dimensional image processing, which allows
one to estimate area but not volume. With LiDAR,
these types of forest measurements can be captured re-
motely from a 3-dimensional perspective.

The purpose of this study is to provide some insight
into the current capability of a commercially available
software program, Toolbox for LiDAR data Filtering
and Forests Studies (Tiffs). Tiffs is a product of Global-
idar and it uses small-footprint LiDAR to estimate for-
est characteristics. The objective is to evaluate the cor-

relation between LiDAR measurements and field mea-
surements. Thus the evaluation was performed using an
accuracy assessment that compared the LiDAR-derived
measurements from Tiffs against field samples obtained
with conventional methods.

2 Methods

2.1 Study Area and LiDAR Data Acquisition
The study area is the Stephen F. Austin (SFA) Exper-
imental Forest in Nacogdoches County, Texas, part of
the Angelina National Forest. It was established by the
U.S. Congress on December 14, 1944 and transferred to
the U.S Forest Service for the purpose of cooperating
with forestry-related research conducted by Stephen F.
Austin State University (Russell 2002). The area con-
sists of roughly 1,036 ha (2,560 acres) along the Angelina
River, composed of southern bottomland hardwoods,
southern pine, and mixed pine-hardwood forests. The
elevation ranges from 53 to 80 m (173 to 263 ft) above
mean sea level (Figure 1).

In cooperation with Stephen F. Austin State Uni-
versity, the Surdex Corporation conducted a LiDAR
flight mission over the SFA Experimental Forest. The
data were obtained on August 15th, 2007, using a Le-
ica ALS50-II LiDAR system that captured discrete,
multiple-return data with an average point density of
5.67 points per m2. This dataset was delivered in LAS
format. Each LAS file covers a square area of 250 by
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250 m.

Figure 2: FIA (Forest Inventory and Analysis) plot lay-
out.

2.2 Hardware and Field Measurement For sam-
pling purposes, the entire SFA Experimental Forest was
divided into 205 tiles, 250 by 250 m each, correspond-
ing to the grid system of the LiDAR dataset. Each tile
was classified as either pine, hardwood, or mixed forest
as the result of a majority process run against a digital
land cover map for a four-county study in east Texas.
The land cover map used for forest cover type classifica-
tion of the tiles had an overall accuracy of 72.78%, and
was derived from 30 m resolution Landsat ETM+ im-
agery (Unger et al. 2008). Thirty of these tiles were ran-
domly selected, and stratified between the different cover
types, with the primary focus on pine. Eleven tiles were
selected from hardwood forests, fifteen from pine forests,
and four from mixed forests. At the center of each tile,
a plot was installed based on the sampling method out-
lined by the USDA Forest Inventory and Analysis (FIA)
National Program. A FIA plot consists of four circu-
lar subplots; a center subplot and three subplots 36.6
m away from the center, 120o apart (Figure 2). Each
circular subplot has a radius of 7.3 m (Burkman 2005).

For field data collection, a map of the study area was
created with ArcGIS, and contained reference data such
as roads, streams, and imagery (Figure 3). The map also
contained the LiDAR tiles and a layer that contained
the measured tree data. This map, along with its data,
was transferred to a Trimble Recon handheld unit where
data was entered in the field with the assistance of Arc-
Pad software. With a Trimble Pro-XR GPS receiver, all
trees with a DBH greater than 15.24 cm (6 inches) were
mapped using the UTM coordinate system, NAD 1983.
The height of each tree was measured using a Trupulse
200B rangefinder from Laser Technology Inc. Tree crown
radii in the four cardinal directions (N, S, E, W) were

also measured with the rangefinder by positioning the
unit underneath the edge of the crown and measuring
the physical distance back to the tree trunk. Diameter
at breast height (DBH) was measured using a diameter
tape. For each tree measured, its status (alive or dead),
species (generalized between pine and hardwood), and
the date of data collection were recorded. To assist in
the use of the rangefinder, and to provide greater ac-
curacy, a retro-reflector surveyor’s prism mounted on a
staff was used. A staff-compass was used to determine
the locations of the sub-plots within each plot. The data
collection was performed between May 2008 and May
2009. A total of 603 trees were measured.

2.3 Data Processing Tiffs (Toolbox for LiDAR
Data Filtering and Forest Studies) is a commercially
available software program that uses an automated
extraction process to generate digital surface models
(DSM), digital elevation models (DEM), and canopy
or object height models (CHM/OHM) based on Li-
DAR data input (Chen 2007). The DSM is a raster
layer that represents the elevation of the canopy. The
DEM provides the elevation surface of the LiDAR re-
turns that the software has deemed ground-returns, de-
picting the bare-earth terrain. The software then sub-
tracts the DEM from the DSM to generate the CHM,
which represents the height of the canopy above the bare
ground. Tiffs then uses the CHM to isolate individual
trees using a marker-controlled watershed segmentation
method, and provides their location, height, and crown
diameter (Chen et al. 2006, Chen 2007). This process
was performed on each of the 30 randomly selected data
tiles, and all LiDAR return values were used.

Other than generating DSM, DEM, and CHM in
raster format, Tiffs also created a text file containing
height, crown diameter, and the x, y, and z coordinates
of each individual tree identified in each data tile. The
text files were converted to ESRI point shapefiles con-
taining all trees and their associated attributes. The
LiDAR-derived trees that fell within the boundary of
the sample plots were selected and extracted for com-
parison against the field-measured tree data. A total
of 1,541 trees that were derived from the LiDAR were
within the sample plots.

2.4 Forest Statistics Three parameters (number of
trees per plot, average tree height per plot, and aver-
age crown radius per plot) were used to compare the
LiDAR-derived and the field-measured data. For each
parameter, root mean square error (RMSE) and cor-
relation coefficients (r) were calculated based on the
assumption that the field-measured data are accurate.
Each RMSE was converted to the percentage of the field-
measured mean value, representing the magnitude of er-
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Figure 3: Map of the SFA Experimental Forest used for field data collection.

ror (Figure 4). The correlation coefficient, orr-statistic,
was calculated between the LiDAR-derived and the field-
measured measurements. In general, the higher the cor-
relation coefficient, more accurate the LiDAR data es-
timation process. Both the RMSE and the correlation
coefficient (r) were calculated at the plot and sub-plot
level using both unfiltered data and filtered data. The
filtered data were obtained by removing field-measured
trees that were classified as dead and having no crown to
measure. Since trees with a DBH of less than 15.24 cm
(6 inches) were not measured in the field plots, LiDAR-
derived trees with height less than 7 m were removed
from the analysis, with the assumption that trees less
than 7 m tall would have a DBH of less than 15.24 cm
(6 inches). This threshold was determined based on the
correlation between tree height and DBH from the field-
measured data.

3 Results and Discussion

The correlation between LiDAR-derived and field-
measured data was generally highest when using the un-
filtered data and when viewed at the plot level (Table1).
When all trees were considered, r for tree count was
0.1777. However, when looking at specific forest types,
the r-values were 0.2569, 0.0855, 0.7156 for pine, hard-
wood, and mixed forests, respectively (Table 1, Count).
It is obvious that the LiDAR-derived data suggested that
there were more trees present than what were measured
in the field, with the average number of trees per plot al-
ways being greater than that of the field measurements.
This resulted in significant errors (all greater than 100%)
in tree counts. Since the Tiffs analysis process is based
on the peaks in the canopy height model, when locating
trees from LiDAR data, any spike in the canopy could
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Table 1: Comparison of forest measurements between LiDAR-derived and field-measured data.
Count

n MeanField MeanLiDAR RMSE % Error r

Plot Level

Non-Filtered: All 30 20.1 50.7 32.0687 159.55 0.1777
Pine 15 17.8 52.9 30.2798 170.11 0.2569
Hardwood 11 20.8 49.5 36.1210 173.66 0.0855
Mixed 4 23.8 49.0 26.2059 110.11 0.7156

Filtered: All 29 19.1 49.9 31.9137 167.09 0.3081
Pine 15 20.1 50.0 30.8275 153.37 0.2838
Hardwood 10 16.5 50.2 35.0386 212.36 0.4668
Mixed 4 22.0 48.5 27.4044 124.57 0.6962

Sub-Plot Level

Non-Filtered: All 120 5.1 12.8 8.8704 173.93 0.0591
Pine 60 5.4 12.7 8.6178 159.59 0.1412
Hardwood 44 4.5 13.2 9.5679 212.62 0.0684
Mixed 16 6.1 12.3 7.7379 126.85 -0.1604

Filtered: All 116 4.8 12.5 8.9139 185.71 0.1240
Pine 60 5.0 12.5 8.6766 173.53 0.1734
Hardwood 40 4.1 12.6 9.4657 230.87 0.2724
Mixed 16 5.5 12.1 8.3516 151.85 -0.3458

Height (m)

Plot Level

Non-Filtered: All 30 20.5 24.9 5.4493 26.58 0.8223
Pine 15 17.3 21.9 5.3513 30.93 0.7363
Hardwood 11 22.7 27.0 5.3256 23.46 0.8601
Mixed 4 21.2 25.6 6.1098 28.82 0.9429

Filtered: All 29 21.4 26.1 5.6517 26.41 0.7517
Pine 15 23.0 27.4 5.3842 23.41 0.7584
Hardwood 10 18.8 24.2 6.0313 32.08 0.6031
Mixed 4 21.9 25.9 5.6502 25.80 0.9754

Sub-Plot Level

Non-Filtered: All 120 19.7 24.6 7.7536 39.36 0.6458
Pine 60 22.6 26.6 6.6482 29.42 0.6077
Hardwood 44 16.2 21.5 7.2251 44.60 0.4954
Mixed 16 18.8 25.9 10.9953 58.49 0.3964

Filtered: All 116 20.5 25.7 7.9771 38.91 0.5316
Pine 60 22.5 27.1 7.6040 33.80 0.5121
Hardwood 40 18.1 23.6 7.1417 39.46 0.3116
Mixed 16 19.2 26.0 10.8168 56.34 0.3881

Crown Radius (m)

Plot Level

Non-Filtered: All 30 3.2 1.5 1.8818 58.81 0.1517
Pine 15 3.0 1.5 1.8272 60.91 0.1065
Hardwood 11 3.3 1.6 1.8976 57.50 0.0798
Mixed 4 3.5 1.6 2.0335 58.10 0.1464

Filtered: All 29 3.5 1.6 2.0780 59.37 -0.0985
Pine 15 3.4 1.6 1.9149 56.32 0.0693
Hardwood 10 3.6 1.5 2.1927 60.91 -0.5537
Mixed 4 3.8 1.6 2.3527 61.91 0.2561

Sub-Plot Level

Non-Filtered: All 120 3.2 1.6 2.0574 64.29 0.0842
Pine 60 3.4 1.6 2.0707 60.90 0.0462
Hardwood 44 3.0 1.5 2.0411 68.04 0.0036
Mixed 16 3.2 1.6 2.0517 64.12 0.2055

Filtered: All 116 3.5 1.6 2.2241 63.55 -0.1062
Pine 60 3.5 1.7 2.2162 63.32 -0.1733
Hardwood 40 3.5 1.6 2.1880 62.51 -0.2139
Mixed 16 3.5 1.7 2.3403 66.87 0.2827
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Figure 4: Comparison of percent error among tree pa-
rameters based on the field mean.

be misidentified as an individual tree. The low correla-
tion between the LiDAR-derived and the field-measured
data for identifying trees also poses a problem when es-
timating the timber volume of a stand. Unfortunately,
the Tiffs program offered limited functionality for cali-
bration.

For tree heights, the correlation using all trees at the
plot level was relatively high (r = 0.8223) (Table 1,
Height). When focusing on specific forest types, the r-
values were 0.7363, 0.8601, 0.9429 for pine, hardwood,
and mixed forests, respectively. For comparison pur-
poses, Means et al. (2000), in their study of Douglas-fir
in the western Cascades of Oregon, were able to achieve
an r-value of 0.96 (R2 = 0.93) by using the average of the
maximum heights of each 10 m grid cell when comparing
LiDAR-derived tree heights to field-measured heights.
Kwak et al. (2007), applied additional transformations
to the watershed transformation as the basis for individ-
ual tree delineation, and obtained an r-value of 0.88 (R2

= .77) for Korean pine trees in Central South Korea.
Holmgren et al. (2003) created an interpolated surface
of the LiDAR data to obtain vertical distance from the
estimated ground elevation, and then used local maxima
to obtain mean tree heights. In their study, an r-value
of 0.95 (R2 = 0.90) was achieved.

For our study, the correlation in tree height is fairly
consistent with the findings from other studies men-
tioned above. However, the accuracy is still problem-
atic when examining the RMSE of 5.4493 m (26.58%)
when all trees were considered at the plot level (Table
1, Height). When comparing average tree height per
plot, LiDAR-derived tree heights was greater than field-
measured heights at all levels. This can be explained in
that LiDAR detects tree heights based on the highest
point of the canopy height model, whereas the tallest

point of a tree is usually difficult to see when measuring
it in the field. Another possible cause is that LiDAR
identified much larger number of trees than what was
found in the field, which may bias the analysis towards
higher values of the canopy. Traditionally, foresters mea-
sure merchantable height in timber cruise. If LiDAR is
to complement field measurements by identifying indi-
vidual trees, the tree height measurement needs to be
calibrated carefully.

As for tree crown radius, the correlation coefficient
for all trees at plot level was 0.1517, which is less than
satisfactory (Table 1, Crown Radius). When examining
specific forest types, the r-values were 0.1065, 0.0798,
and 0.1464 for pine, hardwood, and mixed forests, re-
spectively. When comparing the mean crown radius per
plot, the LiDAR-derived measurements were always less
than the field measurements. This problem is related
to the fact that LiDAR identified more trees than what
were found in the field. It is clear that LiDAR picked up
more trees with limited overlapping crowns, while in re-
ality there were actually fewer trees with larger crowns,
which were often overlapping (Figure 5). This could be
due to over-segmentation on the canopy height model
when detecting individual trees (Kwak et al. 2007).

We also noticed that the r-value for the mixed forest
type is greater than those of pine and hardwood for both
tree count (r = 0.7156) and tree height (r = 0.9429)
at the plot level (Tables 1, Count and Height). As tree
detection is based on a continuous canopy height surface,
the less homogeneous surface of the mixed forest allows
for more accurate delineation of individual trees than
those in pine and hardwood forests, which are generally
more uniform in canopy structure.

4 Conclusions

While Tiffs estimation of tree height is promising,
with a correlation coefficient of 0.8223, tree count and
crown radius estimates appeared to be much less accu-
rate. However, there was some consistency in the errors.
Tiffs tends to overestimate the number of trees and un-
derestimate the crown radius. Tiffs is an easy-to-use
and affordable tool capable of analyzing LiDAR data,
generating a DEM and a CHM, and also delineating in-
dividual trees with their attributes. All of these outputs
are useful in describing the structure of a forest stand.
However, the software lacks the ability of allowing the
user to calibrate the process in order to increase accu-
racy.

Even though studies have shown promising results
that LiDAR can be used for delineating individual trees
and estimating forest properties with satisfactory accu-
racy, the performance of an algorithm might vary from
one forest type to another, or from one region to an-
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Figure 5: Crown radius comparison of field-measured trees and LiDAR-estimated trees.

other. As a commercially available LiDAR data pro-
cessing program, it should be made clear what types
of landscapes will work best with the software. In the
meantime, allowing for the calibration of estimates in
conjunction with field-measured training data would in-
crease the accuracy. If a forest manager is to choose
a LiDAR data processing software program for opera-
tional purposes, the ability to fine-tune the results is a
criteria that should be considered in addition to the cost
of the software.
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