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ADJACENCY CONSTRAINTS IN FORESTRY – A SIMULATED
ANNEALING APPROACH COMPARING DIFFERENT
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Abstract. Adjacency constraints along with harvest volume constraints are important in long term
forest management planning. Simulated annealing (SA) has previously been successfully applied when
addressing such constraints. The objective of this paper is to assess the performance of SA using three
methods for generating candidate solutions. Biased probabilities in the management unit (MU) selection
were introduced, one static and one dynamic. The first one (Method 1) is the conventional (static)
method. The two other methods were implemented through a search vector used in the candidate solution
generator. These methods are based on (Method 2) the number of treatment schedules and standard
deviation of NPV within MUs and (Method 3) the MU’s potential improvement in the objective function
value, the number of URM adjacency violations an MU is involved in, the period specific volume harvested
in an MU and the number of times an MU is selected. The methods were tested on a large number
of datasets including 300 hypothetical forest landscapes characterized by three different initial age class
distributions, respectively young, normal and old. Evaluation of the methods was accomplished by means
of objective function values and first feasible iteration. Solutions improved when introducing bias in
the probabilities for MU selection (Methods 2 and 3) compared to the conventional method (Method
1) and when the probability bias for selecting MUs is dynamic (Method 3) rather than static (Methods
1 and 2). The mean improvement for the average GAP obtained by Method 3 for young, normal and
old forest landscapes was 20.88%, 12.84% and 5.20%, respectively. Whereas for the minimum GAP the
mean improvement was 21.96%, 14.30% and 6.05% for young, normal and old forest landscapes, respectively.

Keywords: OR in Natural Resources; static and dynamic search vectors; grid landscapes; heuris-
tics; Unit restriction model.

1 Introduction

Since simulated annealing (SA) was introduced by Kirk-
patrick et al. (1983) as a technique for solving opti-
mization problems, many disciplines such as biology,
telecommunications, geology, electronics and medicine
have been using SA as a tool to provide good (eventu-
ally optimal) solutions (see e.g. Chibante, 2010). Also
in the forestry sector there are numerous optimization
problems that can benefit from the use of heuristics like
SA. Forestry planning problems include optimization of
long term forest plans with detailed information about
where, when and how silvicultural treatments should oc-
cur (i.e. treatment schedule), transportation of various
forest products (e.g. roundwood, forest residuals) to and

from the industry, and optimization of complicated in-
dustrial processes.

Over time, long term forestry optimization problems
have become more complex since not only the economic
aspects are important but also because environmental
and social aspects of forestry have received increased
attention. This development inevitably has an effect
on the development of long term forest planning and
its complexity. Accordingly, the dependency on math-
ematical programming and information technology has
also increased considerably. A typical example would
be maximization of economic income over time, under
temporal and spatial (adjacency) restrictions. One im-
portant aspect of long term forest planning is spatial
considerations, typically imposed in order to preserve
wildlife habitats or enhance scenic beauty. Such consid-
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erations restrict harvesting of neighboring management
units (MU, i.e. forest stands) in the same or consecutive
time periods.

A lot of work has been done related to adjacency con-
straints in long term forest planning (see e.g. reviews of
Baskent and Keles, 2005; Weintraub and Murray, 2006;
Shan et al., 2009). Adjacency constraints, as defined
by Murray (1999), are divided into the unit restriction
model (URM), where clear cut is not allowed in neigh-
boring MUs in the same time period, and the area re-
striction model (ARM), where the total area of neigh-
boring MUs harvested in the same time period should
not exceed a defined maximum. In addition, the concept
of “green-up constraints” is introduced in order to guar-
antee a time buffer between two consecutive clear cuts.
This concept can be used along with the URM and ARM
approaches (e.g. Brumelle et al., 1998; Boston and Bet-
tinger, 1999, 2006; McDill et al., 2002 ; Goycoolea et
al., 2009; Strimbu et al., 2010). Also the “core area”
concept has become important in long term forest plan-
ning for example due to conservation of wildlife habitats,
where the formation of contiguous areas of old growth
forest over time in a forest landscape is promoted (e.g.
Öhman and Eriksson, 1998; Öhman, 2000; Rebain and
McDill, 2003).

SA has been successfully applied in many forestry
problems addressing adjacency constraints. Like other
heuristic methods, SA is based on a neighborhood so-
lution search approach. A broad definition of a neigh-
borhood of a solution is “the set of solutions which dif-
fer slightly from the original one”. In forestry planning
applications with adjacency constraints, the neighbor-
hood for S-metaheuristics such as simulated annealing
and tabu search is usually defined by the set of new so-
lutions that can be obtained or reached through a change
in timing of clearcut harvests or a change in the applica-
tion of management regimes (e.g. Lockwood and Moore,
1993; Boston and Bettinger, 1999; Öhman and Eriksson,
2002; Bettinger et al., 2002; Öhman and Läm̊as, 2005;
Liu et al., 2006; Bettinger and Kim, 2008; Borges et al.,
2014).

Another important aspect, along with the neighbor-
hood definition, is the candidate solution generator. The
solution generator, among the set of neighboring solu-
tions selects the one(s) that should be evaluated. In
forestry applications, the common procedure when gen-
erating a candidate solution is first to assume a uniform
probability distribution when selecting an MU, and then
within that MU, another uniform probability distribu-
tion is applied to select either the period where the clear
cut should occur or which treatment schedule to apply.
The candidate solution generator, however, can be ma-
nipulated in order to improve the quality of solutions
(e.g. better objective function values) of the adopted

heuristic (e.g. Borges et al., 2014). This may be done
by introducing a bias in the probability distribution for
selection of MUs and even treatment schedules. Biased
selection criteria in this context means that we are using
a probability distribution which is not uniform.

Some previous studies have implemented biased ap-
proaches in the MU selection. O’ Hara et al. (1989)
used a heuristic that moved only through the feasible
space, and three approaches with biased MU selection
were compared with an unbiased (uniform) selection ap-
proach. The biased approaches were based on the im-
provement of the objective function value (harvested vol-
ume) and on the fewest effective adjacent units, i.e. the
number of new units that cannot be harvested. Barrett
and Gilless (2000) implemented bias in the MU selec-
tion by sorting the MUs in descending order according
the MUs total net present value (NPV) and NPV per
ha.

Biased criteria have been applied also in SA forestry
applications. For example, Öhman and Eriksson (1998)
applied SA maintaining the selection of MUs by first
assuming a uniform probability distribution. However,
after the MU selection only three treatment schedules
among 14 were possible to select, i.e. two treatment
schedules moving the period for clear cut one period
forward or backward, respectively, and one treatment
schedule maintaining the selected MU un-harvested over
the entire time horizon. Baskent and Jordan (2002)
maintained the selection of MUs by first assuming a uni-
form probability distribution, but the final harvest was
assigned to the period that returned the lowest harvested
volume in order to favor non-violation of the minimum
harvest volume constraints. Borges et al. (2014) devel-
oped three biased approaches in the MU selection and
compared them with the conventional approach where
a uniform probability distribution in the MU and treat-
ment schedule selection was assumed. The three biased
criteria introduced in the MU selection took into account
the number of treatment schedules and/or the standard
deviation of the NPV within an MU. The biased cri-
teria in that study, however, were defined beforehand,
i.e. the probabilities of selecting an MU were calcu-
lated before the candidate solution generator started and
remained constant throughout all SA iterations. This
means that the candidate solution generator worked
with static search vectors.

It is also possible to introduce bias in MU selection
in a dynamic way where the probabilities are updated
according to the current or best solution. For example,
if penalty functions are adopted (see e.g. Lockwood and
Moore, 1993), it is possible to consider the number of
constraints that each MU is involved in. In a case where
only feasible solutions are allowed (no use of penalty
functions), one may in the MU selection take into ac-
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count the number of feasible treatment schedules for the
MUs.

SA is in general suitable for working in large neigh-
borhood frameworks. This is particularly important in
forestry problems with adjacency constraints. SA is
fairly simple to implement and since it works with two
solutions (current and candidate), it is relatively fast
when evaluating many solutions. We are not aware of
any previous work in the long term forestry planning lit-
erature that uses SA where the candidate solution gener-
ator applies dynamic probabilities for the MUs selection.
The objective of this paper is therefore to assess the per-
formance of SA under three different methods for gener-
ating candidate solutions. We perform a study where we
applied two static search vectors with and without bias
and a dynamic search vector with bias. The methods are
applied to a large number of randomly generated forest
landscapes.

The remainder of this paper is as follows: section 2 de-
scribes the general planning model, the case study based
on a forestry problem, the simulated annealing approach
including the methods for applying the candidate solu-
tion generator and finally the measures for how the three
methods are compared. Section 3 presents results, sec-
tion 4 contains a discussion on how the methods perform,
whereas section 5 presents the conclusions.

2 Material and Methods

2.1 General model We use a standard formulation
of a forestry planning problem where one treatment
schedule is selected for each MUs so that the NPV is
maximized over an infinite time horizon. This objective
is restricted to the URM adjacency constraints and the
sequential flow constraints regarding volume harvested
(VH). The mathematical formulation of the problem is
as follows:

MAX NPV (1)

Subject to

NPV =
∑
i∈N

∑
k∈TSi

Aipikyik (2)

∑
k∈TSi

yik = 1,∀i ∈ N (3)

∑
i∈c

xit ≤ 1,∀c ∈ C,∀t ∈ {1, ..., T} (4)

∑
k∈Xit

yik = xit,∀i ∈ N, ∀t ∈ {1, ..., T} (5)

V Ht =
∑
i∈N

∑
k∈TSi

Aiviktyik,∀t ∈ {1, ..., T} (6)

0.9 · V Ht ≤ V Ht+1 ≤ 1.1 · V Ht,∀t ∈ {1, ..., T − 1} (7)

yik ∈ {0, 1} ,∀i ∈ N, k ∈ TSi (8)

where N is the number of MUs, TSi is the set of treat-
ment schedules within MUi, T is the number of planning
periods, Xit is the set of treatment schedules of MUi that
produce a clear cut in period t, C is the set containing
all maximal cliques related to the forest graph, i.e. a
graph formed by MUs (nodes) and edges that represent
the neighboring relation between MUs (see e.g. Murray
and Church, 1996a, 1996b; Vielma et al., 2007), Ai is
the area of MUi, pik is the NPV per ha associated with
MUi when treated with treatment schedule k, VHt is
the total volume harvested in period t, vikt is the vol-
ume harvested per ha in period t in MUi in treatment
schedule k.

The decision variables yik takes the value 1 if treat-
ment schedule k is applied to MUi, and the value 0 oth-
erwise. The decision variable xit takes the value 1 if
MUi is clear cut in period t, and the value 0 otherwise.
Thus, equation (1) defines the objective function which
maximizes NPV, equation (2) defines NPV, equations
(3) and (??) secure that only one treatment schedule is
applied per MU, i.e. all the area of an MU should be
manage by only one treatment schedule, equations (4)
and (8) secure that only one MU within a clique can be
harvested in each time period, i.e. they define the clique
URM adjacency constraints, equation (5) relates the de-
cision variables yik and xit, equation (6) defines the total
volume harvested in each time period, inequalities (7)
define a 10% allowed variation in flow of the harvested
volume between consecutive periods. Note that equa-
tion 5 forces the variables xit to be either zero or one,
depending if a treatment schedule (yik) from the set Xit

is selected or not respectively. Thus, there is no need to
force these variables to be binary.

The problem presented is the same as in Borges et
al. (2014) but the formulation of the model is different.
Rather than defining the URM adjacency constraints in
a pairwise approach, we use the clique approach (e.g.
Murray and Church, 1996b). For that, the additional
decision variables xit need to be defined and related to
the decision variables yik (equation 5). This formulation
is more compact than the formulation made by Borges et
al. (2014), i.e. the total number of constraints (4) and
(5) are less than the number of constraints needed to
define the adjacency constraints in a pairwise approach.

2.2 Case study To compare the three methods for
selection of a neighborhood solution, 300 artificial forests
(from now on called datasets) were used. These datasets
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represent three different forest landscapes with different
initial age class distributions, namely young, normal and
old (Table 1). Each dataset within a forest landscape
encompasses 1,600 MUs distributed over a grid of 40 x
40 cells. An area of 1 ha was assigned to all cells. The
grid configuration and the equal area assigned to each
cell avoid effects of MU size and number of neighbors per
MU when assessing the methods. Moreover, the datasets
used in this work, are based on 8990 sample plots from
the Norwegian national forest inventory (NFI).

Table 1: Age class distribution (%) for the different for-
est landscapes.

Forest landscape
Age class Young Normal Old

0–10 15 7.69 1
11–20 14 7.69 2
21–30 13 7.69 3
31–40 12 7.69 4
41–50 10 7.69 5
51–60 8 7.69 6
61–70 7 7.75 7
71–80 6 7.69 8
81–90 5 7.69 10

91–100 4 7.69 12
101–110 3 7.69 13
111–120 2 7.69 14
≥121 1 7.69 15

The growth simulator GAYA (Hoen and Eid, 1990;
Gobakken, 2003) was applied to generate treatment
schedules for the MUs representing the landscapes. The
simulator takes as input a set of MUs (plots) and a set
of rules which define how and when forest treatments
may be applied. The output provides detailed informa-
tion on common forest state variables (e.g. standing vol-
ume, harvested volume) as well as treatments (e.g. final
harvest, thinning) and corresponding economic values
??(incomes and costs) for each treatment schedule for all
periods. In addition, NPV is computed based on an infi-
nite planning horizon (soil expectation value is included
in the NPV) provided for each treatment schedule. In
the present study, the following treatments were allowed;
natural regeneration and planting, pre-commercial thin-
ning, conventional thinning and final harvest (clear cut
and seed tree cutting). This means that not only clear
cut contributes to the volume harvested in a period but
also conventional thinning and seed tree establishment.
This means that more harvesting methods are included
compared to most previous works (see e.g. Murray and
Church, 1996; MacDill and Braze, 2000; Bettinger et al.,
2002; Boston and Bettinger, 2006) Moreover, only clear

cut is relevant for the adjacency constraint, as opposed
to seed tree cutting where some trees are left for regen-
eration proposes. Simulations were performed for ten
10-year periods. A 3% discount rate was applied.

The total number of treatment schedules among the
300 datasets varied between 131,102 and 156,963 corre-
sponding to an average of 82 and 98 treatment schedules
per MU, respectively. Moreover, within a dataset the
minimum number of treatment schedules for MUs was 1
and the maximum varied between 594 and 833.

2.3 Simulated Annealing SA is a meta-heuristic
that establishes a relationship between the annealing
of solids and optimization problems (Dowsland, 1995).
The usual parameters in SA applications are the initial
temperature, the number of iterations allowed at each
temperature, the cooling rate, and the final temperature
at which the search is finished (e.g. Bettinger and Kim,
2008). The solutions producing improvements in the ob-
jective function value are always accepted. In order to
prevent the search to be trapped in local optima, solu-
tions with poorer objective function values can also be
accepted depending on a probabilistic threshold which
is defined by the current temperature and the differ-
ence between the current and candidate solution values.
The temperature is kept constant for a certain number
of iterations and then gradually reduced, lowering the
probability of accepting solutions with poorer objective
function values. The candidate solutions are generated
based on the current solution, and the search process
usually finishes when certain criteria are fulfilled, typi-
cally when reaching the final temperature or after per-
forming a certain number of iterations.

When applying heuristics, procedures for local search
are typically used and a definition of the neighborhood is
thus required. Two main approaches can be used. The
first one is accepting only feasible solutions within the
neighborhood (e.g. Murray and Church, 1995; Liu et
al., 2006; O’Hara et al., 1989). However, this approach
is costly in terms of computational time, since each new
solution needs to be assessed in terms of feasibility (Liu
et al., 2006). The second approach is considering infeasi-
ble solutions within the neighborhood (e.g. Öhman and
Eriksson, 1998; Falcão and Borges, 2001, 2002; Borges
et al., 2014). The use of this approach implies some
relaxation of the problem, i.e. some constraints are in-
cluded in the objective function as penalties in order to
worsen the objective function value of solutions that do
not satisfy the constraints. In this way, more movements
will be considered feasible and less check of feasibility is
needed (Liu et al., 2006). This approach is usually faster
in terms of computational time.

Quadratic penalty functions are frequently applied be-
cause they ensure that larger deviations from the targets
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are penalized more than small ones. However, to con-
struct and interpret penalty functions is a difficult task
(Falcão and Borges, 2001). Penalty functions should be
calibrated properly to ensure convergence towards fea-
sible solutions (Lockwood and Moore, 1993). Moreover,
according to Lockwood and Moore (1993), the magni-
tude of the values of the penalty functions should also
be close to the objective function values to secure that
none of the components of the new objective function
have influence over the others. The resulting evaluation
function is usually named “fitness function” and the re-
spective value in SA is named “energy”.

In addition, the quality of the solutions obtained de-
pends on the SA parameter settings and on the penalty
function(s) (if adopted). Therefore, several test runs are
required to find suitable values for the parameters. Usu-
ally some values for each parameter are tested and the
combination producing the best results is adopted. In
the present study SA was implemented and each forest
landscape was parameterized as described by Borges et
al. (2014). This means that the neighborhood definition
and parameters setting were the same for all datasets
within each forest landscape. In detail, the starting tem-
perature was set according to the following formula:

st =
−p1 × (NPV0)

ln(p2)

where, NPV0 is the NPV from the initial solution pro-
duced by SA, p1 is a percentage of the initial NPV value
and p2 is the probability to accept a solution that varies
(worse value) the previous amount. For our datasets we
set p1= 1% for all forest landscapes and p2=10 %, 20%
and 1% for young, normal and old forest landscapes, re-
spectively. For all datasets, the cooling rate was set to
0.995, the number of iterations at each temperature was
set to 5,000 and the neighborhood structure was defined
by changing one treatment schedule of a selected MU at
each iteration (typically called 1-opt moves). Thus, the
assessment of solution feasibility is only dependent on
the evaluation of URM and sequential flow constraints.
As mention, when using the first approach (above) usu-
ally, as an SA search matures, a large number of un-
successful moves are attempted and rejected (due to vi-
olations of constraints or due to severe changes in the
objective function value). If the first approach is em-
ployed, a process for reducing the temperature every x
number of unsuccessful iterations is needed in order for
the process to properly terminate. Thus, we decide for
the second approach, i.e. accepting infeasible solutions
regarding these two types of constraints but penalizing
them in the objective function.

Rather than using the penalty function formula ap-
plied by Borges et al. (2014), we use a slightly different
one where the component penalizing the violation of the

adjacency constraints have been changed. The main rea-
son for the modification has to do with the fact that for
some runs of SA the last feasible solution reported was
found relatively far from the end of the SA run. This
will “deteriorate” the values obtained not only for the
average but also for the standard deviation of the so-
lution values. In Borges et al. (2014), the adjacency
constraints were penalized by considering the product
between the average NPV per MU and the total number
of conflicts among the MUs at the power of two. How-
ever, in a situation where only one conflict is observed
the total NPV associated with the two MUs that are in
conflict can be larger than the respective penalty value
if the total NPV associated with the MUs is larger than
the average NPV per MU. Therefore, we introduce as
penalty value for adjacency constraints, the sum prod-
uct between the number of conflicts in each MU and
the current NPV value associated with each MU. The
formula used was the following:

Φ(l) =

N∑
i=1

NumConflictsil ×NPVil +

ASF

(
β

T∑
p=1

DevV Hlp

)2

, ASF > 0

where, NumConflictsil is the total number of clear cuts
in neighboring MUs of MUi when MUi is also a clear
cut at iteration l, the NPVil is the NPV of MUi at itera-
tion l, and DevVHip is the deviation of volume harvested
from the allowed interval in period p at iteration l. The
scaling factorβwas introduced because URM and har-
vested volume flow constraints are measured in different
units and the scaling factor can be seen as the value
of one cubic meter deviation in URM adjacencies viola-
tions. This scaling factor is computed from the quotient
between the total NumConflicts and the total DevVH in
the initial SA solution and asserts that both components
of the penalty function are in the same unit. Thus, the
value ASF represents the monetary loss of one conflict
and was set to represent the average NPV per MU. This
average NPV per MU is computed by first calculating
the average NPV for each MU according to the treat-
ment schedule list and then the average for all MUs.
The search stops when the final temperature (1% of the
starting temperature) is achieved.

Our implementation was developed in VB.NET,
framework 4.5. The SA runs were performed in an In-
tel(R) Xeon(R) X5650 with 2.67GHz CPU and optimal
solutions were obtained using CPLEX 12.5 with the de-
fault settings.

2.4 Methods applied in the candidate solution
generator In this section, we give a detailed description
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of the conventional method and the methods that intro-
duce bias (different probabilities) in the MU selection.
For all methods, the process of generating candidate so-
lutions is maintained by first selecting an MU and then
selecting a treatment schedule within the MU. In this
way we introduce different methods of bias in the MUs
selection and force the candidate solution generator to
work differently and thus, different candidate solutions
will be generated. The generator works with a search
vector where each entry i corresponds to the cumulative
probability of selecting an MUi. The main advantage of
building the search vector in this way is that it is sorted
(ascending) and allows the use of binary search to find
which MU to be selected.

2.4.1 Method 1 – Conventional method Method
1 (i.e. the conventional method) assumes a uniform
probability distribution for selection of both MUs and
treatment schedules where we first randomly select MUs
and then randomly select treatment schedules within
MUs. This method does not need an associated search
vector since it is possible to mimic the search vector ap-
proach by using the random number generator provided
by the software used. The procedure to build the search
vector is as follows:

1. Start by computing the probability of selection for
each MUi (P(MUi)) using the following:

P (MUi) =
1

#N

2. Then a search vector is created so that each entry i
corresponds to the cumulative probability of select-
ing MUi. The procedure is as follows:

1. Create a vector with dimension equal to the number
of MUs plus one and set the first entry to zero.

2. Then for each entry i, compute the summation be-
tween the previous entry and the P(MUi).

2.4.2 Method 2 – Combining number of treat-
ment schedules and standard deviation of NPV
In Method 2, the bias is introduced in each MU in order
to consider both the number of treatment schedules and
the standard deviation of NPV within MUs (see Borges
et al., 2014). This method was the best of the two biased
and static methods tested in Borges et al. (2014). The
main idea of this method is to give a high probability
of selecting MUs that have a high number of treatment
schedules and a high standard deviation for NPV (SD-
NPV).

The search vector for this method is static since the
values assigned to each entry of the vector do not change

throughout an entire SA run. The resulting search vec-
tor is obtained by applying the procedure as described
for Method 1 with modification for step 1, i.e. for
each MUi, the probability of selection (P(MUi)) is com-
puted by weighting two quotients; (1) the quotient of the
number of treatment schedules within each MU (#TSi)
and the total number of treatment schedules among all
MUs, and (2) the quotient of SDNPV within each MU
(SDNPVi) and the sum of SDNPV for all MUs;

P (MUi) = α× #TSi∑N
i=1 TSi

+

(1− α)× SDNPVi∑N
i=1 SDNPVi

The weight α ∈ [0, 1]was set in order to minimize the
absolute difference between the Pearson correlation coef-
ficient obtained between the number of treatment sched-
ules and the probability assigned and between the NPV
standard deviation and the probability assigned.

2.4.3 Method 3 – Combining potential for ob-
jective function value improvement and con-
straints mitigation In Method 3, the bias for each
MU is defined according to four criteria; 1) the poten-
tial of an MU to improve the objective function value,
2) the number of conflicts that an MU is involved in,
3) the harvested volume in an MU in a specific period
and 4) the number of times the MU is selected. The
potential improvement in the objective function value
from an MU (POIi) is computed as the difference in
NPV between the treatment schedule with highest NPV
and the NPV associated to the treatment schedule as-
signed to the MU. The number of conflicts that an MUi

is involved in (NoConflicti) is computed by summing all
common clear cut periods among the MUs adjacent to
MUi. This value is afterwards multiplied by the NPV
associated with the treatment schedule applied to MUi.
To introduce a bias in the MU selection to consider mit-
igation of sequential flow of harvest volume is not sim-
ple because a treatment schedule can include both thin-
ning and final harvests. Thinning and final harvest ob-
viously appear in different time periods, but they both
contribute to total volume harvested. Therefore, to sim-
plify this issue we focus our attention on the periods
where the largest deviation from the targets in volume
harvested is observed (|Devt1t2|). One way to introduce
a bias in the MUs selection is to consider the volume
harvested in each MUi in a specific period t (vhit) and
prioritize the selection according to the difference be-
tween vhit and |Devt1t2|. Thus, within the two periods
(t1 and t2), if Devt1t2 < 0 we focus on period t1 (t=t1),
if Devt1t2 > 0 we focus on period t2 (t=t2). The main
idea is to remove excess harvested volume in period t.
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The number of times an MU is selected (PKi) is a simple
counting system.

The main aim of Method 3 is to force the generation of
solutions in a direction that might lead to higher objec-
tive function values without adjacency violations. The
number of times an MU is selected is introduced to mit-
igate possible situations where the other criteria end up
focusing the search in just a few MUs. Thus, the more an
MU has already been selected, the lower the probability
should be for that MU to be selected again. This can be
accounted for by considering the inverse of the number
of times an MU is selected. The procedure to calculate
the probability of each MU to be selected is therefore
computed by weighting each criterion as follows:

P (MUi) = α× POIi∑N
i=1 POIi

+

β × NoConflicti ×NPVi∑N
i=1NoConflicti ×NPVi

+

λ

1
|vhip−Devp|∑N

i=1,vhip>0
1

|vhip−Devp|

+ µ
1

PKi∑N
i=1

1
PKi

Since at least one of these four criteria is changing for
each new iteration, the computation of the MUs prob-
abilities will be “expensive” in terms of computational
time if it is done at each iteration. After some experi-
mental runs, we decided to update the MUs probabilities
only when the best solution found is updated in young
and normal forest landscapes while in old forest land-
scapes we decided to update for each update of the tem-
perature. For this method, the search vector is dynamic
because the bias introduced in each MU is changing dur-
ing an SA run.

We worked with four different weightings depending
on whether the constraints are violated or not. Thus,
weights are updated automatically; if both types of con-
straints are violated we used the following weights of
each criterion (α = 0.2, β = 0.6, λ = 0.2 and µ = 0),
if only one type of constraint is violated we used (α =
0.2, β = 0.6, λ = 0 and µ = 0.2) and (α = 0.6, β = 0,
λ = 0.2 and µ = 0.2), for the case of URM and sequen-
tial volume violation, respectively. If no constraints are
violated we used (α = 0.8, β = 0, λ = 0 and µ = 0.2).

2.5 Measures for comparison of the methods
Because SA has stochastic properties, we use penalty
functions and therefore have no guarantee that the fi-
nal solutions reported are feasible or optimal. We per-
formed 10 runs with different seeds (same seeds were
applied in all methods) for each dataset and all runs
within a dataset started with the same initial random
solution. When comparing the methods, we only con-
sidered runs that report solutions without violation of

the constraints, i.e. the last feasible solution found dur-
ing a SA run.

The evaluation of the three methods follows mainly
two procedures proposed by Bettinger et al. (2009). We
started by comparing the solutions obtained from each
dataset and each SA run against the respective optimal
solution of the dataset found by CPLEX. This differ-
ence (GAP) is a good measure to use since its value
is a relative difference independent of the magnitude of
the objective function values. We also recorded the first
feasible iteration in each SA run for the three methods.
Within a dataset, we computed the average, minimum
and standard deviation of the GAPs. These computa-
tions represent the average performance, the best case
performance and the variation in solution values of the
methods (Bettinger et al., 2009). We also computed the
average of the first feasible iteration for comparison pur-
poses. Additionally, we compared the methods statisti-
cally applying the Wilcoxon pairwise signed-rank test
(Wilcoxon, 1945) for the average, minimum and stan-
dard deviation GAPs and for the average first feasible
iteration. Here we test if the differences are statistical
different zero. A relative difference approach (Borges et
al., 2014) is also applied for the average and minimum
GAP between the methods in order to assess the im-
provement in percentage. Here the conventional method
is the reference method.

3 Results

Pairwise comparisons between the methods for the aver-
age and minimum GAP, and for the average first feasible
iteration for young, normal and old forest landscapes are
shown in Figures 1, 2, 3 and 4, respectively. When dots
(datasets) are far from the reference line, this means that
the difference in performance between the methods for
that specific dataset is big.

The results obtained for young and normal forest land-
scapes are in general similar (Figures 1 and 2). For these
forests landscapes, the average and minimum GAPs
were larger for Method 1 than for the other two meth-
ods since large parts of the datasets are below the refer-
ence line. When comparing Methods 2 and 3, the latter
has considerably more datasets with smaller average and
minimum GAPs. Moreover, when the opposite results
occur, i.e. when Method 1 has smaller average and min-
imum GAPs than Method 2 and 3, and when Method 2
has smaller average and minimum GAPs than Method
3, the relative difference between the methods is smaller
since we in general for these datasets observe that they
are closer to the reference line. All these observations
from Figures 1 and 2 were confirmed by statistical tests
(Table 2). In Figure 3, displaying the results from the
old forest landscapes, also reveal the same trends as
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Table 2: p-values from pairwise Wilcoxon signed-rank statistical tests for each criterion (columns). Within a forest
landscape each criterion and method is represented by one hundred values (number of datasets). *** is significance
level =0.01, ** is significance level =0.05, * is significance level =0.10

Forest
landscape

Methods
compared

Average
GAP

Minimum
GAP

StdDev
GAP

Average first
feasible iteration

Young 1 vs 2 1.91E-18 *** 1.09E-16 *** 1.47E-08 *** 1.98E-18 ***
1 vs 3 1.93E-18 *** 4.32E-18 *** 2.41E-03 *** 1.98E-18 ***
2 vs 3 1.08E-12 *** 1.79E-12 *** 2.65E-03 *** 1.98E-18 ***

Normal 1 vs 2 1.96E-18 *** 8.27E-17 *** 0.001225 *** 1.98E-18 ***
1 vs 3 1.96E-18 *** 2.22E-18 *** 0.019453 ** 1.98E-18 ***
2 vs 3 6.15E-11 *** 6.94E-08 *** 0.182724 1.98E-18 ***

Old 1 vs 2 7.76E-17 *** 4.47E-16 *** 0.038134 ** 1.06E-17 ***
1 vs 3 3.44E-18 *** 9.89E-16 *** 0.979267 1.98E-18 ***
2 vs 3 0.701870 0.194507 0.054423 * 1.98E-18 ***

Table 3: Relative difference between Method 1 against Method 2 and 3 for the criteria Average and Minimum GAP.

Average GAP Minimum GAP
Forest
landscape

Methods
compared

Min Mean Max Median Min Mean Max Median

Young 1 vs 2 -29.38 % -16.23 % -2.51 % -16.32 % -31.14 % -13.09 % 12.48 % -13.09 %
1 vs 3 -35.07 % -20.88 % -7.16 % -21.51 % -45.54 % -21.96 % 12.48 % -23.93 %

Normal 1 vs 2 -22.33 % -9.88 % -1.40 % -9.39 % -26.38 % -9.81 % 11.47 % -10.06 %
1 vs 3 -25.68 % -12.84 % -2.76 % -12.32 % -33.74 % -14.30 % 4.91 % -14.00 %

Old 1 vs 2 -13.01 % -5.28 % 14.37 % -5.18 % -20.21 % -5.62 % 8.09 % -5.21 %
1 vs 3 -11.71 % -5.20 % 1.63 % -4.94 % -16.51 % -6.05 % 7.81 % -6.47 %

young and normal forest landscapes when comparing
Method 1 against Methods 2 and 3. However, when
comparing Method 2 and 3, no special trends regard-
ing the average and minimum GAP were observed. The
statistical test performed (Table 2) confirmed these ob-
servations. Moreover, in all datasets the minimum GAP
never reached the value zero, i.e. an optimal solution
was never found.

The standard deviation of the GAPs obtained for a
dataset may be used as a measure to describe the con-
sistency of the results obtained by each method. Having
as reference the values in the axis (Figures 1, 2 and 3),
all the methods become less consistent as the forests get
older, i.e. standard deviations of the GAPs obtained in
young forest landscapes are smaller than in normal for-
est landscapes which again are smaller than in old forest
landscapes. In general, the standard deviations of the
GAPs obtained by Method 2 were slightly smaller than
for the other two methods, but exceptions occur in old
forest landscapes, since for some datasets the standard
deviation of GAP observed was considerably higher com-
pared to the other two methods (Figure 3). The stan-
dard deviations are also in general lower for Method 3
than for Method 1 in all forests landscapes. The statis-

tical test performed (Table 2) confirmed these observa-
tions.

Regarding the average first feasible iteration, Method
2 tends to use more iterations than Methods 1 and 3,
while for Method 3 the average iteration when the first
feasible solution is found is considerable smaller than
for the other two methods. This occurs in all forest
landscapes (Figure 4). In addition, having as reference
the values in the axis (Figure 4), we observed that the
average first feasible iteration tends to appear earlier
in old forest landscapes than in young and normal for-
est landscapes. The statistical test performed (Table 2)
confirmed these observations.

The improvements in percentage are shown in Ta-
ble 3, the negative values represent improvements. In
young forest landscapes, for methods 2 and 3 the mean
improvement was 16.23%, 20.88% for the average GAP
and 13.09% and 21.96% for the minimum GAP, respec-
tively. The same trends were observed in normal for-
est landscapes for both the average and minimum GAP,
i.e. Method 3 shows bigger improvements than Method
2. However, these improvements were smaller than the
ones obtained in young forest landscapes. For old for-
est landscapes the mean improvement for the average
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Figure 1: Scatter plots for young forest landscapes comparing Methods 1 and 2 (upper panels), Methods 1 and 3
(middle panels) and Methods 2 and 3 (lower panels) for average, minimum and standard deviation of GAPs. Dashed
lines are reference lines denoting the equality of the methods. Dots (datasets) above the reference line means that
the method in Y axis has bigger values than the method in X axis.

GAP obtained by Method 2 was slightly better than the
improvement obtained by Method 3, respectively 5.28%
and 5.20%. However, for the minimum GAP the im-
provement obtained by Method 3 was again higher than
the mean improvement obtained by Method 2. More-
over, all the medians show that in a considerable number
of datasets improvements were obtained.

In all the methods, the number of SA runs finding
feasible solutions was high. Only in five and six datasets
of old forest landscapes, one run was not capable to find
a feasible solution in Methods 1 and 2, respectively.

4 Discussion

Long term forest management planning and optimiza-
tion of forest management are complex tasks, and are

highly dependent on mathematical programming and in-
formation technology. An important aspect of long term
forest planning is spatial considerations and constraints
on management in adjacent MUs, which are often im-
posed in order to preserve wildlife habitats or enhance
scenic beauty. SA has been used widely to address this
type of problems (e.g. Shan et al., 2009) and improving
its performance is therefore always an asset. Thus, in
addition to the conventional method (Method 1) to se-
lect MUs, we applied two methods for introducing bias
in the MUs selection, one using a static search vector
developed by Borges et al. (2014) (Method 2) and one
using a dynamic search vector developed for the present
study (Method 3). These vectors were used in the can-
didate solution generator of an SA application.
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Figure 2: Scatter plots for normal forest landscapes comparing Methods 1 and 2 (upper panels), Methods 1 and 3
(middle panels) and Methods 2 and 3 (lower panels) for average, minimum and standard deviation of GAPs. Dashed
lines are reference lines denoting the equality of the methods. Dots (datasets) above the reference line means that
the method in Y axis has bigger values than the method in X axis.

The methods were tested through a comprehensive
experimental design where we, from NFI sample plots
comprising a multitude of forest conditions, constructed
300 hypothetical datasets characterized by three differ-
ent initial age class distributions (young, normal and
old). Our experimental design with a large number of
datasets provides a more solid base for evaluation of
the developed methods as compared to many previous
works with relatively few datasets (e.g. O’Hara et al.,
1989; Boston and Bettinger, 1999; Falcão and Borges,
2001, 2002; Crowe and Nelson, 2003). A large num-
ber of datasets is important because of the stochastic
nature of the method applied (SA). Consequently, this
enables better assessments of the impacts of using differ-
ent ways to introduce bias in the selection of MUs. The
grid configuration of the forest landscapes with equal cell

(stand) size (1 ha) was also important to exclude factors
that may influence the evaluation of the methods, for
instance the number of neighbors (Li et al., 2010) and
the area of each MU. Even controlling such conditions
in the experimental design it could be interesting to as-
sess the performance of the methods in different forest
conditions such as MUs with different size and shape.

In general, the average objective function values
obtained from all datasets indicated that the biased
methods perform better than the conventional method.
Moreover, the dynamic approach (Method 3) produced
lower GAPs than the static approaches (Methods 1 and
2) in the majority of the datasets (Figures 1, 2 and 3).
Within forest landscapes, the results obtained in young
and normal forest landscapes by the new method pre-
sented in this work (Method 3) was the best, whereas
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Figure 3: Scatter plots for old forest landscapes comparing Methods 1 and 2 (upper panels), Methods 1 and 3 (middle
panels) and Methods 2 and 3 (lower panels) for average, minimum and standard deviation of GAPs. Dashed lines
are reference lines denoting the equality of the methods. Dots (datasets) above the reference line means that the
method in Y axis has bigger values than the method in X axis.

for old forest landscapes none of the methods (Method
2 and 3) outperformed the other in regards to the objec-
tive function values. These results agree with our expec-
tations; first because the results of Borges et al. (2014)
in general showed that introducing bias through static
search vectors in the MU selection performed better than
the conventional method, and second because by select-
ing some MUs according to relevant criteria (manage-
ment problem dependent) and by changing these selec-
tion probabilities dynamically, achieving better solutions
is more likely.

When comparing the standard deviations of the
GAPs, in general within a forest landscape, the solu-
tions obtained from each method were similar (Table 2).
Furthermore, as found in McDill and Braze (2000) old
forest problems are more difficult to solve, and the re-

sults from our problems indicate the same, since not only
the GAPs are bigger but also the increase of the stan-
dard deviations observed from young towards old for-
est landscapes may indicate that datasets of old forests
landscapes are more difficult to solve. Although, the
numbers of treatment schedules among all forest land-
scapes is the relative the same, more variables indicating
clear cuts and consequently also more clique constraints
were generated in old forest landscapes. This might ex-
plain why this type of forest landscape is more difficult
to solve. Thus, in future research more focus should be
put on this type of forest landscapes. Furthermore, the
results obtained by Borges et al. (2014) for Methods 1
and 2 were improved, i.e. average GAPs became smaller
and the difference between these two methods increased
in all forest landscapes. This shows that the new penalty
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Figure 4: Scatter plots for the average first feasible iteration in all forest landscapes comparing Methods 1 and 2
(upper panels), Methods 1 and 3 (middle panels) and Methods 2 and 3 (lower panels). Dashed lines are reference
lines denoting the equality of the methods. Dots (datasets) above the reference line means that the method in Y
axis has bigger values than the method in X axis.

function is more appropriate than the penalty function
applied in the work of Borges et al. (2014).

Regarding the average first iteration when a feasible
solution is found, there was undoubtedly a difference
between the methods. Method 2 needs more iterations
than Method 1 to find the first feasible solution while
Method 3 uses considerably less iterations, showing that
the bias introduced in MU selection in order to mitigate
the two types of constraints was successful (Figures 3,
2 and 3). The value of that solution might not be very
good. However, it can be used as a starting point for any
other technique or the subset of following feasible solu-
tions found can be used as initial population in evolution
programs. When comparing Methods 1 and 2 these re-
sults are not entirely in agreement with Borges et al.
(2014), where only in old forest landscapes it was evi-

dent that Method 2 in average needed more iterations to
find the first feasible solution. This difference in results
is due to the new penalty function applied.

In general Method 3 seems most robust as this method
produces better objective function values and performs
as consistent (standard deviations) as the other two
methods. However, one disadvantage of using Meth-
ods 2 and 3, compared to Method 1, is the weighting
criteria that have to be considered for the search vec-
tor. In Method 2, this disadvantage was reduced by an
automatic procedure adapting to the problem at hand,
i.e. to the specific dataset (see Borges et al., 2014). For
Method 3, although the weights given to the criteria im-
plemented on the search vector performed well, it would
be of interest to perform a sensitivity analysis in order
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to assess the impacts of using different weighting alter-
natives.

Heinonen and Pukkala (2004) showed that performing
changes in two MUs are better than in only one MU and
that this may improve the quality of the solution. Thus,
an interesting challenge for future research could be not
only applying dynamic search vectors but also to extend
dynamically the size of the solution neighborhood. This
could for instance be useful when solving adjacency vio-
lations, since they can occur in different disjoint cliques
of MUs. Another interesting extension for the dynamic
approach could be the introduction of bias also in the
selection of the treatment schedules after the MUs are
selected (e.g. Baskent and Jordan, 2002).

Spatial considerations and adjacency constraints are
important aspects of long term forest planning. It is
therefore crucial to develop efficient tools for decision
support in forestry that are able to handle these aspects.
SA is one of the most used metaheuristics to address
this type of forest planning problems. Our work demon-
strates that not only the parameterization of SA is im-
portant for the quality of the solutions but also the way
the search in the solution space is performed. Moreover,
guiding the search dynamically towards more promis-
ing areas of the solution space including mechanisms to
mitigate constraints violations (Method 3) seems to be
a better strategy than using static methods (Methods
1 and 2), and will in general produce higher objective
function values, i.e. lower average and minimum GAPs.

5 Conclusions

Introducing bias in the candidate solution generator
selecting MUs in SA (Methods 2 and 3) improved
the performance compared to the conventional method
(Method 1) when forestry planning problems with ad-
jacency and sequential flow constraints were addressed.
Considerable improvement and consistency in the ob-
jective function value of the solutions was also achieved
by means of a new penalty function and by introduc-
ing the bias for selecting MUs dynamically (Method
3). The mean improvement for the average GAP ob-
tained by Method 3 for young, normal and old forest
landscapes was 20.88%, 12.84% and 5.20%, respectively.
Whereas for the minimum GAP the mean improvement
was 21.96%, 14.30% and 6.05% for young, normal and
old forest landscapes, respectively. Introducing a dy-
namic bias in MUs selection considering the mitigation
of constraints also shortened the appearance of the first
feasible solution compared to the static methods. More-
over, not only the parameterization of the SA but also
the way the search of the solution space is performed is
important for the quality of the solutions.
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Öhman, K., 2000. Creating continuous areas of old for-
est in long-term forest planning. Canadian Journal of
Forest Research, 30, 1817-1823.
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