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ABSTRACT. Tabu search is a metaheuristic search process that is useful for locating high-quality solutions
to complex combinatorial forest harvest scheduling problems. In this work, we illustrate the quality of
outcomes produced by a tabu search process when it is applied to four forest management problems, and we
statistically compare the effectiveness of tabu search when it uses a range of parameters and enhancements.
This illustration of the variability in results is novel to the use of tabu search to address complex agriculture
and forest management problems. The addition of enhancements, which allow n-opt moves through the
solution space, reversion back to high-quality positions in the solution space, and randomly designated
tabu states (tenures), all seem to improve the ability of tabu search to locate near-optimal solutions with
regularity. In addition, we assess whether the second-best selection from the tabu neighborhood has any
value in improving the outcomes from the search process. We found that the use of 2-opt exchange moves
seems essential for developing forest harvest schedules of higher quality, and the use of search reversion
can often help improve the quality of solutions. The selection of the second-best solution from the tabu
search neighborhood, while of little value when used exclusively, may be valuable when used sparingly and
in conjunction with other search process enhancements.
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1 INTRODUCTION

In the course of developing a forest harvest schedule, a
computational process can be used to seek the best set
of assignments to decision variables with respect to an
objective function and subject to a set of constraints
on those assignments (Mart{ et al. 2025). Contempo-
rary forest harvest scheduling problems are combinato-
rial in nature, often due to policy constraints that re-
quire consideration of the spatial location of proposed
management activities. These constraints can be re-
lated to wildlife habitat availability, the size and location
of final harvests, and other issues that require discrete
variables in the problem formulations. As forest har-
vest scheduling problems can be exceptionally large and
complex, they may require efficient search processes to
locate high-quality, if not optimal, solutions. If the prob-
lem contains nonlinear constraints, a complex objective
function, or a wealth of discrete decision variables, the
problem may become intractable for some search pro-
cesses since locating the optimal solution may require a
significant amount of computing time (Mart{ et al. 2025).

Options for addressing these problems in the field of
forestry have focused mainly on mathematical (exact)
methods, simulation, and heuristic search procedures.

Heuristic search processes have gained popularity for
addressing combinatorial optimization problems because
they may be able to locate high-quality solutions with a
relatively short amount of computing time, even though
they cannot guarantee that the optimal solution to a
problem will be located (Marti et al. 2025). Heuristic
search processes can be predominantly stochastic or de-
terministic in nature, and they may rely on a popula-
tion of diverse feasible solutions (i.e., a population-based
or p-metaheuristic process), or they may concentrate
on the modification of a single solution (i.e., a point-
based or s-metaheuristic process) to a problem. From
a technical standpoint, tabu search is a point-based s-
metaheuristic search process that iteratively modifies
a single solution, ideally improving its quality as the
heuristic search converges toward the optimum solution.
Tabu search employs memory to avoid recently visited
locations in the solution space, with the goal of guiding
the search process toward areas in the solution space
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where high-quality solutions might be found (Thomas
and Salhi 1998). This sense of adaptation and learning
is closely associated with artificial intelligence (Bettinger
et al. 2024). When first described in a work related
to efficient solutions for office space planning problems
(Glover et al. 1985), the original name for tabu search
was adaptive memory programming (Glover 2022). The
notion that a move through a solution space might be
considered taboo (off-limits) may have been first offered
by Chung (1953) in their description of alternatives for
avoiding certain solution states in a Markov chain sim-
ulation process. Tabu search is different, however, from
Markov chain processes in that generally, there are no
transition probabilities that influence the search, and
there is a need to assess a considerable number (if not
all) of potential changes to a current solution prior to
selecting one.

In solving problems, tabu search is generally based
on modifications to a deterministic hill-climbing search
process (Nurmela 1993). However, unlike a determin-
istic hill-climbing search process, tabu search does not
terminate when there are no more improving moves to
make within a solution space. As it conducts its work,
tabu search allows the selection of inferior solutions to
the current solution so that it may avoid early termi-
nation of the search process (Glover 1986). The search
moves in a stepwise (iterative) fashion toward the op-
timal solution of a problem using one or more mem-
ory mechanisms that act to prevent it from returning
too soon to recently visited locations within the solu-
tion space (Hopper and Turton 2001), features that are
designed to help the process avoid becoming trapped at
local optima (Hertz and de Werra 1987). Once selected,
potential assignments to decision variables are placed in
a short-term (or tenure) tabu list, effectively designating
them as off-limits for a while. These recently selected
assignments are made fully available once again (with-
out a potential penalty) after the tabu state (tenure)
has expired. Given these characteristics of the search
process, Glover (1986) suggested that under certain cir-
cumstances, tabu search might also be called weak in-
hibition search since the moves that are freely available
(not tabu) at any one point in time during a search rep-
resent only a subset of the total moves available to the
search. Although there are options for interjecting ran-
domness into a tabu search process (Glover 1995), per-
haps the deterministic nature of tabu search for solving
problems is appealing because the search process makes
logical modifications to a current solution in the search
for the optimal solution to a particular problem. Given
the need to assess many candidate moves through the
solution space prior to selecting one, tabu search has
been characterized as a slow, thoughtful, and rational
method for navigating through a solution space (Bet-

tinger 2025a). However, as with all heuristic search pro-
cesses, locating the optimal solution to a problem in a
vast solution space is not guaranteed.

The initial works fully describing tabu search were
published approximately 35 years ago (Glover 1989,
1990), followed later by a seminal book (Glover and La-
guna 1997). Some of the early works illustrating the
application of tabu search for forest harvest scheduling
purposes were developed by Murray and Church (1995),
Bettinger et al. (1997), Brumelle et al. (1998), and
Richards and Gunn (2000). Improvements in the man-
ner and efficiency of which tabu search seeks the op-
timal solution to a very large problem include assess-
ing a randomly selected subset of potential neighboring
solutions from which a move is selected (Hertz and de
Werra 1987; Huang et al. 2002; Shao et al. 2023), assess-
ing only moves of high potential based on the application
of a learning function (Niroumandrad et al. 2024), and
assessing only a subset region-limited number of moves
(Bettinger et al. 2007) during each iteration of the search
process. Other adjustments have included forcing the se-
lection of moves to be a certain distance (with respect to
the objective function value) from the current solution to
promote diversification (Glover and Lii 2021). Further-
more, in Goscient et al. (2015), the number of consecutive
iterations of a tabu search process without leading to an
improvement in the objective function value is used to
prompt a diversification routine (restart mechanism) to
direct the search to a different location in the feasible re-
gion of the solution space. Assuming that the quality of
solutions generated via tabu search varies as the parame-
ters and enhancements change, the objective of this work
is to explore the behavior and success of the tabu search
process when alternative parameters and enhancements
are considered and use a statistical test to assess whether
the sets of outcomes are significantly different. As with
most works concerning the use of heuristic search pro-
cesses when applied to forest harvest scheduling prob-
lems, the exact solution to each problem is also used to
represent a point of comparison.

2 METHODS

This work explores the behavior of tabu search when
attempting to locate high-quality solutions to contem-
porary forest harvest scheduling problems and the vari-
ation in the quality of outcomes as parameters are mod-
ified and enhancements are added. An exact mathe-
matical formulation is described below for the contem-
porary forest harvest scheduling problems that are as-
sessed, along with a brief summary of the methods em-
ployed to locate the optimal solution to each problem.
The heuristic search process is then described, along
with several enhancements that are hypothesized to im-
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prove the quality of the outcomes. A description of the
case study forests upon which these processes are applied
then follows.

2.1 Problem formulation

To assess the quality of the solutions generated by tabu
search, four forest management problems are addressed.
As in the recent assessment of the behavior of the
threshold accepting search process (Bettinger 2025b),
the problems include the following:

1. Maximizing the discounted net revenue of forest
harvest activities and constraining final harvests via
the unit restriction harvest adjacency model (URM)
(Murray 1999)

2. Maximizing the discounted net revenue of forest
harvest activities and constraining final harvests via
the area restriction harvest adjacency model (ARM)

3. Forcing an even-flow of scheduled harvest volume
by minimizing squared deviations between sched-
uled and desired harvest volumes constraining final
harvests via the URM

4. Forcing an even-flow of scheduled harvest volume
by minimizing squared deviations between sched-
uled and desired harvest volumes constraining final
harvests via the ARM

The notation used in the problem formulation de-
scribed below involves the following:

a, = the area of a stand of trees n;

AV GV = the average scheduled harvest volume across
all time periods in the time horizon;

B = the allowable deviation (decimal percentage,
where 25% = 0.25) from the average sched-
uled harvest volume;

g = a green-up window for final harvest activities,
expressed as the number of time periods ¢;

H,; = the scheduled harvest volume during time pe-
riod t;
i = the interest rate for discounting revenues

when they occur;

lw = the lower limit (time periods) of the period of
time defining the green-up window of a final
harvest activity;

m = a neighboring stand of stand n, defined as
sharing a physical edge;

M = the total number of neighboring stands of
stand n;

MA = the maximum assumed final harvest area
size;

n = a single stand in a forest;
N = the total number of stands in a forest;

O,, = the set of neighboring stands of stand n;
p=(1+ i)(tfl)'5+(2~5) = (1 +1)5t-25,

74, = the potential revenue from stand n when a
final harvest activity is scheduled during time
period t;

S, = the set of all stands adjacent to stands in set
O,, and all stands adjacent to neighbors of
neighbors, and so on (Murray 1999);

t = a single time period within the time horizon
of the tactical plan;

T = the total number of time periods in the time
horizon of the tactical plan;

TV =the desired (target) harvest volume to
achieve during a time period;

ww = the upper limit (time periods) of the period
of time defining the green-up window of a
final harvest;

v, = the volume per unit area available within
stand n during time period t;

Ty = a binary decision variable that indicates
whether or not (0) stand n is scheduled;
a final harvest activity is scheduled during
time period t;

z = the time periods within the green-up window
of a scheduled final harvest.

The objective function for problems 1 and 2 is as fol-
lows:

T N
.. TtnTtn
Maximize —_— 1
yu() o
The objective function for problems 3 and 4 is as fol-
lows:
T
Minimize Y (H, — TV)? (2)
t=1

Accounting rows (or functions) are employed to assess
the scheduled harvest volume expected during each time
period of the time horizon.

N
Z (xmvman) — Ht = O Vt (3)

n=1
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Resource constraints are employed to ensure that only
one final harvest (clearcut activity) is assigned to each
stand within the time horizon.

T
thn S 1 V?’l, Ttn € {07 1} (4)
t=1

When the URM adjacency policy is employed, the fol-
lowing constraints apply when a stand (n) is scheduled
for a final harvest during time period t:

uw M
Tin + Z Z Tom <1 Vn, t (5)

z=lw meO,,

lw=t—(g-1) (6)
iflw <1, lw =1 (7)
uw =1+ (9-1) (8)
ifuw > T,uw =T (9)

The variable z in Equation 5 represents the green-up
window, or the amount of time (based on a number of
time periods) before and after a scheduled final harvest
activity. In this case, each stand (n) and each neighbor-
ing stand (m) are assessed for scheduled final harvest
activities, and at most, only one of the stands can be
scheduled for a final harvest within the green-up window
that ranges from lw to uw. When the ARM adjacency
policy is employed, the following constraints apply when
a stand (n) is scheduled for a final harvest during time
period ¢ and replace those suggested by Equation (5):

uw M
Tinln + Z Z Tomlm < MA (10)

z=lw meO0,US,

In Equation 10, each stand (m) that is adjacent to
a focal stand (n) and other stands adjacent to m and
their neighbors, etc., are assessed as a potential sprawl-
ing cluster of final harvest activity areas that are all
scheduled within the time periods defined by the green-
up window (lw to uw) of focal stand n.

For maximization problems and (2), the following
wood flow constraints are employed:

T
> Hi
tle —AVGV =0 (11)

H, > (1-B)AVGY Vit (12)

Hy < (1+B)AVGV vt (13)

Equation (11) is used to determine the average sched-
uled harvest volume across all time periods within the
time horizon. Equations (12) and (13) limit the sched-
uled harvest volume in each time period to a bound (de-
fined as +3) around the average harvest volume.

The maximization problems were subjected to the
branch and bound search process within Lingo version
21 (LINDO Systems Inc. 2024). The minimization prob-
lems were subjected to a quadratic branch and bound
search process within Lingo version 21. The maximiza-
tion problems require less than one second to solve with
Lingo. The minimization problems, owing to the desire
to achieve exact even flow of harvest volume, were more
difficult to solve and were allowed to run for 50-110 hours
before the quadratic branch and bound search process
was interrupted, and the highest-quality feasible solu-
tion was reported. Even though the termination point
for these searches was unpredictable, we assume that
the results from these searches are relatively close repre-
sentations of the optimal solutions to the minimization
problems. The tabu search process was developed via
Visual Basic 2012. The heuristic search required ap-
proximately one second per instance (run) for the least
diligent search and approximately 10 minutes for the
most diligent search.

2.2 Mathematical programming (exact) search
process

The mathematical programming, or exact search pro-
cesses, employed to locate the optimal solutions to the
problems addressed here were once considered mized
case or partial linear programming problems when they
were first described by Dantzig (1958) and others. These
types of problems have a set (¢) of decision variables,
where a subset of these (d) might be assigned a nonneg-
ative continuous real numeric value in the final solution
and where ¢—d of these might be assigned a nonnegative
integer value in the final solution. A mathematical pro-
cedure that uses a tree-like search pattern, the branch
and bound process, can be used in an attempt to locate
the optimal solution (Rensi and Claxton 1972). Branch-
and-bound search is an intelligent search process that
first solves a relazed linear programming model (McDill
and Braze 2001) and then uses an expanding tree of
mixed-integer linear programming solutions that grows
in many directions as it pursues the optimal solution to
a problem (Sierksma 1996). The search process was de-
scribed in early published works as a tree graph structure
that is composed of nodes (solutions) and arcs (paths
to other potential solutions) and has been characterized
as a branch and exclude algorithm or additive algorithm
(Balas 1965; Bare and Norman 1969), a form of strong
inhibition search (Glover 1986), and a conventional tech-
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nique that can be used to produce solutions to assign-
ment problems (Thalman et al. 1991). With respect to
decision processes, a branch and bound search might be
viewed as a deterministic, intelligent strategy to search
for the optimal solution to a problem (Michalewicz and
Fogel 2002). However, the search process may termi-
nate early when the difference between the relaxed up-
per bound and the best feasible lower bound (for a max-
imization problem of course) represents a value within a
predefined range (optimality tolerance) often expressed
as a percentage of the relaxed upper bound (McDill and
Braze 2001).

Contemporary forest harvest scheduling problems,
which include wood flow and harvest adjacency con-
straints, may require many policy constraints (Bet-
tinger 2023) and therefore can be difficult to formu-
late and solve exactly via mathematical programming
approaches. Like many contemporary forest manage-
ment problems, those that utilize integer and mixed
integer programming problem formulations reside in
the nondeterministic polynomial (NP) class of problems
(Karp 1972), and unfortunately, difficult or intractable
problems may require computing time (or number of
processing steps) that is an exponential function of the
size of a problem. Although difficult to prove, when
a problem is considered NP-hard, there are no known
polynomial-time algorithms that can be employed to
solve it. The effort expended to solve exactly (find
the global optimum solution) NP-hard problems also
increases exponentially with the size (number of deci-
sion variables, number of constraints) of the problem
(Bodin et al. 1981), suggesting that it may be impracti-
cal to attempt to locate the optimum solution to certain
problems via exact algorithms (Bianchi et al. 2008). As
noted earlier, the maximization problems studied here
were relatively easy to solve, whereas the minimization
problems were more difficult.

2.3 Heuristic search process

This work investigates the quality of outcomes from tabu
search, when enhanced, from efforts to locate the op-
timal solution to a forest harvest scheduling problem.
After the development of an initial feasible solution or
beginning with a null solution, a tabu search process
constructs a neighborhood of potential moves or a set
of alternative solutions, which can be reached from the
current solution through a change to one or more as-
signments to decision variables. In theory, a tabu search
neighborhood recognizes (a) each decision variable, (b)
each potential change in the assignment to a decision
variable, and (c) the potential objective function value
that may result when the potential change is made.
The best possible move is selected from the complete

set of potential changes, and feasibility is subsequently
assessed. Ideally, this potential change to the current
solution leads to a feasible solution; however, if this is
not the case, the next best move from the neighbor-
hood is selected (and feasibility is again assessed). If
the moves selected in this manner always lead to higher-
quality solutions, the search behaves like a deterministic
hill-climbing algorithm. However, unlike a deterministic
hill-climbing search process, tabu search does not ter-
minate when there are no other higher-quality solutions
that can be reached from the current solution. For a
problem where integer assignments are required for the
decision variables, a general tabu search process, charac-
terize as the simple form in Glover and Laguna (1997),
involves the following steps:

1. Develop an initial feasible integer solution to the
problem and call it the current solution.

2. Develop a set (neighborhood) of nearby local solu-
tions. Select the best proposed move in the solution
space from the neighborhood of options and call it
a temporary proposed solution.

2.1. If the temporary proposed solution is infeasi-
ble, ignore the move, and return to Step 2 to
select a different move from the tabu search
neighborhood.

2.2. If the temporary proposed solution is feasible,
assess the tabu tenure of the proposed move.

2.2.1. If the proposed move is not considered
tabu and has an objective function value
that is higher in quality than the objective
function value of the best solution held in
memory, save the proposed move as the
best solution and proceed to Step 3.

2.2.2. If the proposed move is not considered
tabu and does not have an objective func-
tion value that is higher in quality than
the objective function value of the best so-
lution held in memory, proceed to Step 3.

2.2.3. If the proposed move is considered tabu
yet has an objective function value that is
higher in quality than the objective func-
tion value of the best solution held in
memory, save the proposed move as the
best solution and proceed to Step 3. This
bypass results when the proposed move
(and resulting solution) passes the aspi-
ration criterion test.

2.2.4. Tf the proposed move is considered tabu
yet has an objective function value that
is not higher in quality than the objective
function value of the best solution held in
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memory, label the move as unavailable for
selection during this iteration and return
to Step 2 to select a different move. In
this case, the proposed move (and result-
ing solution) fails the aspiration criterion
test.

3. Formally accept the proposed move and make the
temporary proposed solution the current solution.

4. Update the tabu state of all decision vari-
able/assignment combinations (potential moves).

5. If the termination criterion has been satisfied, stop
and report the best solution stored in memory; oth-
erwise, return to Step 2.

The neighborhood of proposed moves, in the basic im-
plementation of tabu search, involves changing the as-
signment made to a decision variable, holding static all
other assignments to all other decision variables in the
current solution. Each potential change to the current
solution is assessed in this manner, and these are con-
sidered 1-opt moves. Evaluating the potential exchange
(or change (Bachmatiuk et al. 2015)) of assignments be-
tween two or more decision variables (n-opt moves) can
require the assessment of a significantly larger neighbor-
hood unless enhancements are employed (Bettinger et
al. 2007; Niroumandrad et al. 2024; Shao et al. 2023).
The proposed move temporarily selected from the neigh-
borhood in Step 2 is assumed to be the best choice avail-
able from the set of proposed moves not already consid-
ered during the current iteration of the model. In this
respect, the search process involves a deterministic hill-
climbing search process. However, as Step 2.2.4 sug-
gests, if the proposed move has been selected recently
during the search, it is passed over for another proposed
move from the neighborhood. In addition, Step 2.2.2
suggests that allowable moves within the search process
may not improve the objective function value, and when
followed, this course of action is contrary to the behavior
of a deterministic hill-climbing search process.

From a forest planning perspective, the number (N) of
1-opt move assessments in a full neighborhood, assum-
ing integer assignments are required for every decision
variable, is as follows:

Nstands X (Npotential assignments to stands — 1);

where the number of potential assignments to stands -
1 reflects the fact that each stand has been assigned
a choice in the current solution to the problem. This
approach assumes that a single choice (harvest or more
intricate management regime) is assigned to each stand.
In this respect, the development of a full 2-opt exchange
neighborhood within a tabu search can require:

-1/2

Nstands X (Nstands

potential moves to assess, which recognizes the fact that
exchanging the assignments to stands j and k produces
the same potential solution as exchanging the assign-
ments to stands k and j. If multiple assignments can
be assigned to a single stand throughout the time hori-
zon, the size of the full neighborhood would obviously
be larger. Since many potential moves need to be as-
sessed prior to selecting one (much like deterministic hill-
climbing), tabu search is a relatively slow search process
unless only a portion of the tabu neighborhood is as-
sessed (Bettinger et al. 2007; Hertz and de Werra 1987;
Huang et al. 2002; Niroumandrad et al. 2024; Shao et
al. 2023).

The short-term memory (tabu tenure) function in
tabu search tracks the amount of time, in iterations of
the search process, since a certain assignment was made
to a decision variable. With one exception (Step 2.2.3),
after a proposed move from the neighborhood has been
formally accepted (Step 3), it cannot be considered again
until a certain number of search process iterations have
passed. The specific tenure assigned to a potential move
is actively updated as the search progresses (Thalman
et al. 1991). Although a static number of iterations are
assumed in a basic tabu search process, tabu list man-
agement activities of various kinds have been proposed
(Dammeyer and Vog 1993). For practical purposes, tabu
tenure can be random, static, or adaptive (Barnes and
McKinzie 2006; Battiti and Tecchiolli 1994; Glover 1995;
Hertz and de Werra 1990). Cycling, or the process of
returning repeatedly to the same set of solutions (Fig-
ure 1) with oscillating objective function values and no
apparent convergence (Mitchell and Kaplan 1968), can
occur during a search unless the short-term memory
function prevents this from happening (Hertz and de
Werra 1987). By inhibiting certain moves in this man-
ner, the use of a tabu state (or tenure) has been char-
acterized as a short-term strategic forgetting aspect of a
search process (Glover and Greenberg 1989). While the
tabu tenure of a potential assignment might normally
suppress the assignment of an activity to a decision vari-
able, the aspiration criterion of tabu search (described
in 2.2.3) overrides the constraint and allows a tabu move
to be selected from the neighborhood (Nurmela 1993).
Interestingly, some tabu search processes lack this cri-
terion (Goscien et al. 2015). Since the search process
learns and adapts to situations using a memory func-
tion, one could argue that there is a close association
between tabu search and artificial intelligence in general
(Bettinger et al. 2024). However, the tabu state needs
to be carefully considered since, if it is short relative to
the number of potential moves within the tabu neigh-
borhood, it may not prevent cycling.

Another enhancement to s-metaheuristics such as
tabu search involves the use of search reversion, a con-
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Figure 1: The behavior of tabu search when the tabu state (short-term memory, tenure) is too short. Figure la
illustrates a long series of search iterations. Figure 1b focuses on a smaller subset, illustrating the cycling of solutions

during the search process.

cept that promotes intensified search within high-quality
areas of the solution space (Glover and Laguna 1997).
Search reversion replaces the current solution with the
best solution stored in memory after a predefined num-
ber of search iterations, although an adaptive process
can be hypothesized. A short rate of reversion (few it-
erations that pass before reverting) can limit the diver-
sification of a search process; a long rate of reversion
may limit the intensification of a search process. From
prior experiments, it appears that the appropriate rate
of reversion differs from problem to problem (Bettinger
et al. 2015; Bettinger and Zhu 2006).

Although not the subject of this paper, a frequency-
based memory strategy might be employed to prompt
penalties or inducements that promote or discourage
the selection of moves from a tabu search neighborhood
(Glover and Laguna 1997). This memory strategy might
track the frequency of selection of assignments to deci-
sion variables during a tabu search process. A structure
such as that used for short-term memory might be de-
signed to hold a running sum of the number of occasions
that each decision variable/assignment move has been
selected from the neighborhood. At some point, the
search process will pause briefly and attempt to insert
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into the current solution those moves that have been se-
lected least frequently. The intent of this memory strat-
egy is to interject some diversification into the search and
explore unknown (perhaps) areas of the solution space.

With this background in mind, the following four en-
hancements and associated assumptions are employed
and assessed in this work:

e Random-length short-term memory. The short-
term tabu state (tenure) of 1-opt moves (measured
in model iterations) has a value as long as 20%
or 25% of the potential decision variables associ-
ated with the problem. However, it is randomly
selected from a set ranging from one iteration to
the maximum amount each time a tabu state is
applied to a stand/harvest assignment. In the
work described here, tabu states are applied to
the stand/harvest assignments associated with 1-
opt moves. Tabu states are not applied to the stand
assignment /stand assignment exchanges associated
with 2-opt moves.

e Reversion to a high-quality solution. Search rever-
sion is either employed or not employed. When it
is employed, it occurs every 10 or 20 iterations of
the search process. Noted as a search intensification
strategy in Glover and Laguna (1997) and a search
diversification strategy in Thomas and Salhi (1998),
search reversion has previously been suggested to
be valuable for heuristic search processes associ-
ated with forest harvest scheduling problems (Bet-
tinger et al. 2015; Bettinger and Zhu 2007; Sun et
al. 2019).

e 2-opt exchange moves. At each iteration of the
search process, 2-opt exchange moves are either em-
ployed or not employed. When employed, they are
conducted for ten consecutive iterations after (a)
every fifty or (b) every one hundred consecutive 1-
opt moves of the search process. Glover (1996) de-
scribed the value of m-opt moves to a search pro-
cess. Bettinger et al. (1999) first illustrated their
value in addressing forest harvest scheduling prob-
lems. In a forest management context, Bachmatiuk
et al. (2015) illustrated the value of exchange and
change forms of n-opt moves within a search pro-
cess.

e Semi rational selection of a move from the tabu
search neighborhood. The semi rational selection of
a move from the tabu search neighborhood is either
employed or not employed. When employed, the
second-best choice from the neighborhood of moves
is selected (instead of the best choice) after (a) every
five or (b) every 10 iterations of the search process.
Alternatively, the basic search process of selecting

the best choice from the neighborhood is followed
during each iteration of the search process.

In the latter case, selecting the second-best choice
from the tabu search neighborhood is not as rational
as selecting the best choice and is inconsistent with a
deterministic hill-climbing search process. However, in
doing so, this course of action may provide some level
of search diversification that is unavailable to the ba-
sic form of tabu search. Notably, given steps 2.1 and
2.2.4 of the process, the second (or third, or fourth, etc.)
choice from the neighborhood can often be considered.
The only difference from the enhancement noted above
is that the best choice from the neighborhood is deliber-
ately ignored for at least one iteration of the search pro-
cess. This deliberate manner of ignoring the best move
from the neighborhood in favor of the second best is
different than the probability function approach Huang
et al. (2002) used to decide whether to choose the best
move from the neighborhood or the second best move.
We hypothesize that each of these four enhancements
(Table 1) can lead to higher-quality solutions to con-
temporary forest harvest scheduling problems than cases
where no enhancements are employed and that in com-
bination, they may lead to even greater quality results.

Table 1: Conditions of parameters and enhancements
related to a tabu search process when it was applied to
a forest harvest scheduling problem.

Sub-process within Sub-process Options

tabu search Opt.1  Opt. 2 Opt. 3
Short-term memory? 20% 25% —
Search reversion® none 10 20
2-opt exchange moves® none  10/50 10/100
Second-best selection? none 5 10

®The tabu tenure is a random number of iterations between
one and x% of the total potential moves.

bEvery X iterations the search pauses and replaces the current
solution with the best one held in memory.
“The number of 2-opt moves (10) consecutively conducted for
every consecutive 1-opt moves (50 or 100).

?The number of iterations that pass before a second-best solu-
tion is selected from the neighborhood.

Additional scenarios included: (1)) Short-term mem-
ory 20%, no 2-opt moves, no search reversion, second-
best selection during every iteration; and (2) Short-term
memory 20%, 10/50 2-opt moves, search reversion ev-
ery twenty iterations, second-best selection during every
iteration. These scenarios assess the use of the second-
based selection from the tabu search neighborhoods dur-
ing each iteration of the search process with no other
enhancements (1]}, and with enhancements that seemed
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to lead to the higher quality solutions (2). The total

scenarios assessed was 2 X 3 X 3 x 3+ 2 = 56.

2.4 Case study forest areas

Two hypothetical case study forests are scheduled man-
agement activities (final harvests, or clearcuts of trees)
over a time horizon to illustrate the differences in out-
comes when search parameters and enhancements are
adjusted. Both forests are subject to the problems de-
scribed above, where there is a maximization (net dis-
counted revenue) and a minimization (deviations from a
target wood flow value) objective.

The Lincoln Tract (Bettinger et al. 2017) is a hypo-
thetical forest situated in the western United States and
is composed of 87 stands that encompass 1,842 hectares.
Three of these stands are unavailable for harvest, as they
represent predominantly riparian (wetland) areas. The
remaining 84 stands encompass 1,788 ha of even-aged
stands of Douglas-fir (Pseudotsuga menziesii) and west-
ern hemlock (Tsuga heterophylla) trees of various ages.
The time horizon for the tactical problem is 30 years, and
each of the six time periods is five years in length. The
final harvests are assumed to occur, for modeling pur-
poses, in the middle of each time period. The volumes
are represented in thousand board feeﬂ (MBF), a tradi-
tional unit of sawtimber employed in the United States.
A harvest target of 13,950 MBF (32,918 m?) per time pe-
riod is assumed in the minimization problem, an amount
that was estimated as a sustainable harvest level on the
basis of the Hanzlik formula (Hanzlik 1922), where there
are substantial amounts of forests older than the desired
final harvest age (as is the case here). One management
action (final harvest) is modeled, and the minimum final
harvest age is assumed to be 35 years. The maximum
size of a final harvest area is assumed to be 48.6 ha (the
legal maximum in Oregon). The green-up period after
a final harvest has been scheduled is assumed to be 5
years (one time period), which implies that final harvest
activities should not be scheduled during the same time
period as those already scheduled if the stands under
consideration are physically adjacent (share an edge).

The Jones Tract is a hypothetical forest situated in
the southern United States and is composed of 81 stands
that encompass 1,053 hectares, although 16 stands are
unavailable for harvest, as they represent wetland ar-
eas. Thus, 65 stands of trees are available for harvest
activities (867 ha), and these are composed of even-aged
stands of loblolly pine (Pinus taeda) of various ages. The
time horizon is 20 years, and the time periods are each 5
years long. The final harvests are assumed to occur, for

LA board foot is theoretically a piece of wood that is 1 inch
(2.54 cm) thick, 12 inches (30.5 ¢cm) wide and 12 inches tall, or
some other reasonable combination of thickness and size equal to
144 cubic inches (2,362.8 cubic cm) of solid wood.

modeling purposes, in the middle of each time period.
The volumes are represented in tons (907.2 kg), a tra-
ditional unit of weight in the United States. A harvest
target of 19,000 tons (17,236,800 kg) per time period is
assumed in the minimization problem, an amount esti-
mated as a sustainable harvest level on the basis of the
Meyer amortization method (Meyer 1952). One manage-
ment action (final harvest) was modeled, and the mini-
mum final harvest age was assumed to be 22 years. The
maximum size of the final harvest area is assumed to be
48.6 ha, and the green-up period after a final harvest has
been scheduled is again assumed to be one time period.

For both case study areas, the interest rate for dis-
counting purposes (i) is assumed to be 5% in the maxi-
mization problem, and timber volumes per time period
are allowed to vary (8) by 25% from the average sched-
uled volume per time period when scheduled.

2.5 Statistical tests

For each of the combinations of assumptions (scenar-
ios), independent runs of tabu search are conducted to
generate 200 solutions. Given two case study forests
(described below), four management problems, and 56
enhancement scenarios, 89,600 solutions (forest plans)
are created, each representing the best solution from in-
dependent runs of the tabu search process. Each run
of the tabu search process was initiated with a ran-
domly generated, feasible harvest schedule. Here, the
random number list of the personal computer (12th gen-
eration Intel® Core™i9-2900, 2.4 GHz processor and 64
GB RAM) was first accessed at a point that was based
on the clock of the computer when each independent run
was initiated. Others have asserted that solutions gener-
ated by independent runs that begin in different areas of
the solution space can be considered independent sam-
ples from a broader sampling distribution (Golden and
Alt 1979; Los and Lardinois 1982), even though it has
been suggested that a poor starting solution may hinder
the ability of a search process to converge upon the op-
timal solution to a problem (Mitchell and Kaplan 1968).
As each scenario contains 200 samples (the independent
runs), we assume that the distribution of the 200 ob-
jective function values is relatively normal. Two-tailed
t—tests were conducted to determine whether the qual-
ity of solutions when comparing two scenarios is signif-
icant when different parameters and enhancements are
employed. In this effort, 12,320 two-tailed t-tests were
conducted.

3 REsuULTS

For each of the four management problems described
above, and for both case study forests, 11,200 inde-
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pendently developed forest plans (56 scenarios x200
heuristic solutions each) were generated via the heuris-
tic search process (89,600 plans in total given the two
forests and four management problems).

3.1 General trends in Problem 1: Maximization
of net discounted revenue, URM model of
adjacent final harvests

With respect to the application of the heuristic search
process to the Lincoln Tract, the following trends were
observed (see the corresponding letter in Figure 2).

(a) Employing 2-opt exchange moves with no search
reversion; however, the selection of second-best moves
every five iterations seems to result in the highest-quality
solutions with the smallest range and variability.

(b) Selecting the second-best moves during every iter-
ation without any other enhancements generally leads to
the poorest set of solutions on average with the largest
interquartile range.

(c¢) Employing 2-opt exchange moves with search re-
version every ten iterations yields solutions not quite as
good as employing 2-opt exchange moves with search
reversion every twenty iterations.

(d) Not employing 2-opt exchange moves generally
leads to solutions with greater variability.

(e) Utilizing a tabu state that represents 20% of the
available choices in the tabu search neighborhood leads
to solutions with approximately the same quality and
variability as when using a tabu state that represents
25% of the available choices.

(f) Occasionally, one or more outliers are produced.

Some of these trends (b, d, e) were also observed when
the heuristic search process was applied to the Jones
Tract (Figure 2).

The optimal solution (using mixed integer program-
ming) for this problem when applied to the Lincoln Tract
was $43,581,416.80. The optimal solution was not lo-
cated from 11,200 runs of the model. Considering all
56 scenarios, heuristic search solutions were within 1%
of the optimal solution 4.8% of the time. Considering
only the top five scenarios (sorted by the average solu-
tion value), heuristic search solutions were within 1% of
the optimal solution 29.8% of the time. The optimal
solution for the Jones Tract was $2,020,050.97. The op-
timal solution was located two times from 11,200 runs of
the model. Considering all 56 scenarios, heuristic search
solutions were within 1% of the optimal solution 5.9% of
the time. Considering only the top five scenarios (sorted
by the average solution value), heuristic search solutions
were within 1% of the optimal solution 11.3% of the
time.

3.2 General trends in Problem 2: Maximization
of net discounted revenue, ARM model of
adjacent final harvests

With respect to the application of the heuristic search
process to the Lincoln Tract, the same trends were ob-
served with respect to the results for this problem, as was
observed for the previous maximization problem (Fig-
ure 3). Similarly, some of these trends (b, d, e) were
also observed when the heuristic search process was ap-
plied to the Jones Tract (Figure 3).

The optimal solution for this problem when applied
to the Lincoln Tract was $43,882,583.90. As with the
URM model of final harvest adjacency, the optimal so-
lution was not located from 11,200 runs of the model.
Considering all 56 scenarios, heuristic search solutions
were within 1% of the optimal solution 2.6% of the time.
Considering only the top five scenarios (sorted by the
average solution value), heuristic search solutions were
within 1% of the optimal solution 11.6% of the time. The
optimal solution for the Jones Tract was $2,045,594.00.
The optimal solution was located one time from 11,200
runs of the model. Considering all 56 scenarios, heuristic
search solutions were within 1% of the optimal solution
16.1% of the time. Considering only the top five sce-
narios (sorted by the average solution value), heuristic
search solutions were within 1% of the optimal solution
32.9% of the time.

3.3 General trends in Problem 3: Minimization
of deviations from a harvest volume target,
URM model of adjacent final harvests

With respect to the application of the heuristic search
process to the Lincoln Tract, the following trends were
observed (see the corresponding letter in Figure 4).

(x) Employing 2-opt exchange moves and perhaps
second-best selections from the neighborhood without
employing search reversion generally leads to less varia-
tion in the solutions generated.

(v) Employing 2-opt exchange moves and perhaps
second-best selections from the neighborhood, yet with
20-iteration search reversion, leads to higher-quality so-
lutions being generated.

(z) Selecting the second-best moves during every it-
eration without any other enhancements generally leads
to the poorest set of solutions on average.

These trends were also evident in the quality of the
forest plans generated for the Jones Tract (Figure 4).
However, the results from the Lincoln Tract to this min-
imization problem contained much wider ranges of varia-
tion, with multiple solutions among the poorer sets that
might be found in Q4 of the box-and-whisker illustra-
tions.
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Figure 2: Box-and-whisker plots illustrating the variation in solution quality from sets of tabu search runs when
applied the Lincoln Tract (Top) and the Jones Tract (Bottom) under the maximization objective and URM model

of final harvest adjacency.

The optimal solution for this problem when applied
to the Lincoln Tract was 0.90 squared units (thousand
board feet, or MBF). The tabu search process was able
to locate solutions of higher quality 64 times (out of
11,200 runs), with most (68.8%) of these being located
when assuming a tabu state (or tenure) of up to 25% of
the potential neighborhood moves, ten 2-opt exchange
moves after every 50 1-opt moves, and a reversion rate
of 20 iterations. In these cases, the frequency of second-
best moves did not matter, as nearly equal numbers of
these solutions were located when it was assumed that
the second-based selection from the neighborhood would

be selected every 0, 5, or 10 iterations of the model.
The optimal solution for this problem when applied to
the Jones Tract was 0.05 squared units (tons of wood).
The tabu search process was able to locate solutions of
higher quality 301 times (out of 11,200 runs), with most
(70.4%) of these being located when assuming a tabu
state (or tenure) of either 20% or 25% of the potential
neighborhood moves, ten 2-opt exchange moves after ev-
ery 50 1-opt moves, and a reversion rate of 20 iterations.
As with the Lincoln Tract, in these cases, the frequency
of second-best moves did not matter, as nearly equal
numbers of these solutions were located when it was as-
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Figure 3: Box-and-whisker plots illustrating the variation in solution quality from sets of tabu search runs when
applied to the Lincoln Tract (Top) and the Jones Tract (Bottom) under the maximization objective and ARM model

of final harvest adjacency.

sumed that the second-based selection from the neigh-
borhood would be selected every 0, 5, or 10 iterations of
the model.

3.4 General trends in Problem 4: Minimization
of deviations from a harvest volume target,
ARM model of adjacent final harvests

With respect to the application of the heuristic search
process to both the Lincoln Tract and the Jones Tract,
the same trends were observed as in the previous mini-
mization problem (Figure 5). The optimal solution for
this problem when applied to the Lincoln Tract was 0.45
squared units (thousand board feet, or MBF'). The tabu

search process was able to locate solutions of higher qual-
ity 87 times (out of 11,200 runs), with most (74.7%)
of these being located when assuming a tabu state (or
tenure) of 20% or 25% of the potential neighborhood
moves, ten 2-opt exchange moves after every 50 1-opt
moves, and a reversion rate of 20 iterations. As with
the previous cases noted above, in these cases, the fre-
quency of second-best moves did not matter, as nearly
equal numbers of these solutions were located when it
was assumed that the second-based selection from the
neighborhood would be selected every 0, 5, or 10 itera-
tions of the model.

The optimal solution for this problem when applied to
the Jones Tract was 0.02 squared units (tons of wood).
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Figure 4: Box-and-whisker plots illustrating the variation in solution quality from sets of tabu search runs when
applied to the Lincoln Tract (Top) and the Jones Tract (Bottom) under the minimization objective and URM model

of final harvest adjacency.

The tabu search process was able to locate solutions of
higher quality 396 times (out of 11,200 runs), with most
(75.3%) of these being located when assuming a tabu
state (or tenure) of either 20% or 25% of the potential
neighborhood moves, ten 2-opt exchange moves after ev-
ery 50 1-opt moves, and a reversion rate of 20 iterations.
As with the other cases noted above, here, the frequency
of second-best moves did not matter, as nearly equal
numbers of these solutions were located when it was as-
sumed that the second-based selection from the neigh-
borhood would be selected every 0, 5, or 10 iterations of
the model.

3.5 Outcomes of statistical tests

To assess the statistical significance of the differences
in sets of solutions, 12,320 two-tailed t-tests were con-
ducted for pairwise comparisons of scenarios involving
the eight problems (two case study forests, four man-
agement problems) and 56 parameter/enhancement ar-
rangements. When comparing solely the use or nonuse
of 2-opt exchange moves, often (66.9% (Jones Tract) to
89.1% (Lincoln Tract) of the time), the results were sta-
tistically significant (p = 0.05), and better results were
obtained when 2-opt exchange moves were used in the
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Figure 5: Box-and-whisker plots illustrating the variation in solution quality from sets of tabu search runs when
applied to: the Lincoln Tract (Top) and the Jones Tract (Bottom) under the minimization objective and ARM

model of final harvest adjacency.

maximization problems that included the URM model
of final harvest adjacency. However, when the 2-opt ex-
change moves were used in the maximization problems
that included the ARM model of final harvest adjacency,
statistically significant (p = 0.05) and better results were
obtained 97.5% (Lincoln Tract) to 100% (Jones Tract)
of the time.

When comparing the outcomes generated for the min-
imization problems, the differences between employing
the ARM and URM constraints were not as clear. For
the cases where the URM model of final harvest adja-
cency was employed (86.8% (Lincoln Tract) to 91.2%
(Jones Tract) of the time), the results were statisti-
cally significant (p = 0.05), and better results were ob-

tained when 2-opt exchange moves were used. Similarly,
in cases where the ARM model of final harvest adja-
cency was employed, often (89.5% (Lincoln Tract) to
94.7% (Jones Tract) of the time), statistically signifi-
cant (p = 0.05) and better results were obtained when
2-opt exchange moves were used.

When the second-based choice from the tabu search
neighborhood was selected at every iteration of the
search process, with no other enhancements to the
search, the set of 200 solutions was statistically signif-
icant (p = 0.05) and worse in quality than every other
scenario tested (440) under the eight problems (two
case study forests, four management problems) and 55
other parameter/enhancement scenarios. With respect
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to the maximization problems, exclusively selecting the
second-best solution from the tabu search neighborhood
during every iteration of the search, in conjunction with
enhancements (ten 2-opt exchange moves for every fifty
1-opt moves, and reversion every twenty iterations), pro-
duced a set of solutions that was not statistically signif-
icant (p = 0.05) and different than only 10.9% to 29.1%
of the other 55 other parameter/enhancement scenarios.
However, the outcomes from this scenario were statis-
tically significantly different than (a) sets of outcomes
that represented solutions of higher quality and (b) sets
of outcomes that represented solutions of lower qual-
ity. With respect to the minimization problems, the
results were worse. Exclusively selecting the second-
best solution from the tabu search neighborhood during
every iteration of the search, in conjunction with the
same enhancements, produced a set of solutions that
was not statistically significant (p = 0.05) and differ-
ent than only 0% to 9.1% of the other 55 other pa-
rameter/enhancement scenarios. Again, the outcomes
from this scenario were statistically significantly differ-
ent than both (a) sets of outcomes that represented so-
lutions of higher quality and (b) sets of outcomes that
represented solutions of lower quality. As a result of
these limited and exploratory tests, bypassing the best
solution from the tabu search neighborhood during each
iteration of the search process (a semi rational approach
to decision-making) seems to be of little value.

With respect to employing search reversion as an en-
hancement by itself, most of the time, statistically sig-
nificant (p = 0.05) and better sets of results for the
maximization problems could be found when using re-
version with another enhancement. When the URM
model of final harvest adjacency was considered, 79.9%
(Jones Tract) and 93.0% (Lincoln Tract) of the sets of
solutions were significantly different and lower in quality
when search reversion was used alone. When the ARM
model of final harvest adjacency was considered, 81.3%
(Jones Tract) and 92.5% (Lincoln Tract) of the sets of
solutions were significantly different and lower in quality
when search reversion was used alone. Similar observa-
tions were noted for the minimization problems. When
the URM model of final harvest adjacency was consid-
ered, 86.9% (Jones Tract) and 80.4% (Lincoln Tract) of
the sets of solutions were significantly different and lower
in quality when search reversion was used alone. When
the ARM model of final harvest adjacency was consid-
ered, 90.2% (Jones Tract) and 77.6% (Lincoln Tract) of
the sets of solutions were significantly different and lower
in quality when search reversion was used alone.

Interestingly, the combination of 2-opt exchange
moves and second-best selection from the tabu search
neighborhood every five iterations of the tabu search
model often produced statistically significant (p = 0.05)

and better sets of results than the other combinations
of enhancements tested here. With respect to the max-
imization problems that employed the URM model of
final harvest adjacency, 84.6% (Jones Tract) and 97.7%
(Lincoln Tract) of the sets of solutions were significantly
different and higher quality when only 2-opt exchange
moves and second-best selection from the tabu search
neighborhood were employed. When the ARM model
of final harvest adjacency was employed, 83.6% (Jones
Tract) and 97.2% (Lincoln Tract) of the sets of solutions
were significantly different and higher in quality. Even
more striking results were observed for the minimization
problems. For the minimization problems that employed
the URM model of final harvest adjacency, 97.2% (Jones
Tract) and 96.3% (Lincoln Tract) of the sets of solutions
were significantly different and higher quality when only
2-opt exchange moves and second-best selection from the
tabu search neighborhood were employed. When the
ARM model of final harvest adjacency was employed,
94.9% (Jones Tract) and 94.4% (Lincoln Tract) of the
sets of solutions were significantly different and higher
in quality. However, even though this combination of
enhancements (2-opt exchange moves and second-best
selection every five iterations) seemed superior to other
scenarios, when comparing these directly to scenarios
that employed 2-opt exchange moves and second-best
selection every ten iterations, 68.8% of the time, there
was no statistically significant difference (p = 0.05) in
the quality of the sets of solutions.

4  DISCUSSION

Tabu search represents an endeavor to enhance a de-
terministic hill-climbing search process by remembering
recent moves selected within the solution space while
searching for the optimal solution. Tabu search might be
considered one of the more rational decision processes for
developing high-quality solutions to complex problems,
as initially, a tabu search process heads directly for a lo-
cal optimum solution to a problem (Glover 1986). Once
there, other moves are selected in an attempt to break
free of the local optima by avoiding those moves that
have been recently made, in some cases to prevent recent
moves from being reversed. This short-term memory of
recent moves helps the search process avoid becoming
trapped at local optima, a common problem with deter-
ministic hill-climbing methods, by allowing the search
process to move to lower-quality solutions with the hope
of eventually locating other nearby higher-quality solu-
tions. This short-term memory also helps prevent the
cycling of solutions. These aspects of tabu search, re-
membering recent moves and preventing cycling, act as
a filter to direct the search process to alternative promis-
ing regions of the solution space (Romanycia and Pel-
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letier 1985). These characteristics of the search process
can be of value in solving complex combinatorial prob-
lems in agriculture and forestry, where assignments of
management activities to areas of land are necessary.

The objective of this work was to illustrate how the
results generated by a heuristic search process may vary
under different assumptions of parameters and enhance-
ments. The detailed results provided from tabu search
runs have arguably never before been presented in a re-
search article. The variation amongst solutions gener-
ated from a random starting point, and the comparisons
of these when different parameters and enhancements
are employed, should be informative to those interested
in addressing complex combinatorial problems in agri-
culture and forestry. As was demonstrated, metaheuris-
tics such as tabu search may require careful parameter
tuning to enable efficient and effective high-quality near-
optimal (if not optimal) solutions to combinatorial opti-
mization problems (Marti et al. 2025). The selection of
search parameters is often based on the experience and
expertise of the person or group conducting the work
(Mart{ et al. 2025), yet others have suggested secondary
optimization methods to locate the set of parameters
most appropriate to guide the search process (Pukkala
and Heinonen 2006). Therefore, one limitation of this
work is that the optimal parameters and combination
of enhancements were not determined, although from
prior experience (Bettinger et al. 2015; Bettinger and
Zhu 2006), it seems that these will vary from problem
to problem. As was noted, the initial solution for each
of the 89,600 runs of the tabu search heuristic was ran-
domly defined, which is suggested for research purposes
(Golden and Alt 1979; Los and Lardinois 1982). How-
ever, in at least one prior published work (Akbulut et
al. 2017), the initial solution for the tabu search process
consisted of an optimal solution generated by discretiz-
ing the assignments from a relaxed solution generated
via linear programming. In Akbulut et al. (2017), 18 dif-
ferent ways to convert continuous value harvest assign-
ments to discrete value assignments were examined, and
in some cases, higher quality outcomes were produced as
compared to the random starting strategy. With respect
to the present work, this additional enhancement to the
search process was not employed; therefore, one might
also view this omission as a limitation of the study.

The integration of heuristic search enhancements
within the basic structure of certain s-metaheuristics
is important to effectively and efficiently utilize their
search behavior to locate higher quality solutions to
complex problems. For example, the use of search re-
version is important, yet seems to be more useful when
accompanied by n-opt exchange moves within a heuris-
tic search process (Bettinger et al. 2015), a suggestion
that is confirmed in this work. Furthermore, a random

tabu state has been suggested in other works (Bettinger
et al. 2015) as a way to explore high-quality areas of the
solution space more effectively when search reversion is
employed, as the use of search reversion may frequently
return the search process to the same place (solution)
within the solution space. Aside from the program-
ming code necessary to implement search process en-
hancements, the main issue challenging the integration
of heuristic search enhancements is that the character-
istics of employment may be different for each problem.
For example, using too many consecutive n-opt exchange
moves stifles diversification, as no new assignments are
interjected into the solution (they are simply exchanged
amongst the decision variables). The amount of n-opt
exchange moves deemed necessary, and the timing of
their entry into the search process are hypothesized to
be important, yet perhaps problem (and hence domain)
specific. This suggests that artificial intelligence might
be useful in the future to sense the behavior of a search
and to adjust the parameters and enhancements em-
ployed as a search process progresses to sufficiently bal-
ance intensification and diversification tactics. These
advances in knowledge, albeit small, can be of value
to many aspects of society where s-metaheuristic search
processes are used to address increasingly complex opti-
mization problems (Bettinger and Boston 2017).

5 CONCLUSIONS

When appropriate parameters and enhancements are
employed, tabu search may be able to locate high-
quality, if not optimal, solutions to complex, contem-
porary forest harvest scheduling problems. These find-
ings are domain-specific and may not be transferable
to other areas of work unless the problem formulations
are similar. Nonetheless, a randomly defined short-term
tabu state helps the process avoid cycling. The peri-
odic use of 2-opt exchange moves and search reversion
helps intensify the search within high-quality areas of
the solution space. The ability to select the second-best
alternative from the tabu neighborhood sometimes al-
lows diversification from what may be considered the
logical path through the solution space. While the tabu
search process is computationally slow compared with
other s-metaheuristics, owing to the need to assess many
alternatives prior to making a move through the solu-
tion space, the rational, deterministic manner in which
a problem is solved may be appealing.
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