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ABSTRACT. Stochastic differential equations (SDEs) are increasingly prevalent in a variety of fields. They

have become routine in areas like pharmacokinetics and finance.

Forestry applications, on the other

hand, remain uncommon. This is an accessible introduction to the basic concepts and practical use of
SDEs, with an emphasis on forest growth modeling. I begin by briefly discussing dynamical system ideas,
describing rates of change in a state space instead of using functions of time directly. Rates of change
can be specified by finite differences, but a formulation in continuous time with differential equations is
often more convenient. Rational parameter estimation necessitates a stochastic representation of the error
structure. Besides observation errors, process noise or environmental variability can be important. Both
sources of variability can be taken into account with stochastic differential equations. Simple examples are

demonstrated using R software.
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1 INTRODUCTION

The use of stochastic differential equations (SDEs) is
growing in many areas. They are used for describing
error structures and to estimate parameters in dynam-
ical systems, systems that develop over time subject to
management and environmental interventions. Unfor-
tunately, the mathematics and computation of general
SDE models can be complex and highly technical, and
that is reflected in the available literature. For model-
ing purposes, however, technical details are either not
relevant or an intuitive understanding is sufficient. This
introduction should be accessible to practitioners with-
out a specialist mathematical background. The ideas
are illustrated with examples from forest stand develop-
ment, but they are much more general.

The text is structured into two main sections: Dynam-
ical Systems, and Statistics. These are followed by ex-
amples of using the resde R package in modeling height
growth.

The Dynamical Systems section begins discussing the
limitations of modeling growth directly as functions of
time, as in traditional yield tables. A more flexible al-
ternative is to model instead rates of change, which are
then accumulated to compute trajectories between any
two system conditions. For that to work properly, it is
necessary to describe the current condition (or state) by
a sufficient number of state variables, with a rate equa-

tion for each of them. The ideas are explained initially
with annual or periodic rates of change, determining
the trajectory at only a discrete set of points in time.
It is often more accurate and convenient to consider
vanishing small time intervals, expressing the rates of
change as derivatives, resulting in differential equations
and continuous-time trajectories.

Once we have a (deterministic) model, we need to es-
timate parameters. Rational parameter estimation re-
quires some model of the variability or uncertainty in
the data, the subject of the Statistics section. It is com-
mon to assume that the deterministic model is exact,
with only observation errors. Otherwise, if the rates of
change are also uncertain or subject to perturbations,
the continuous-time formulation leads to SDEs.

The resde package deals with one-dimensional SDEs
that can be reduced to linear by a change of variables (re-
ducible). The development of top height is well described
by a dynamical system with a single state variable, since
it is largely independent of density or other stand vari-
ables. It happens that practically all published growth
models can be written as a linear differential equation
on some height transformation.

It is shown first how to fit a model for a single tree or
stand. In a site index model, the growth of each stand
depends on a site-dependent parameter specific to the
stand. The second example estimates site index mod-
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els considering the parameters as either fixed unknown
constants or mixed effects.

The article ends with a concise Summary. For ad-
ditional details and literature references, one might see

(2013)) on dynamical systems, and (2023))
on SDEs.

2 DYNAMICAL SYSTEMS

2.1 Functions of time, e.g., yield tables

Figure 1: Yield tables (or curves, or equations).

The simplest representation of systems that develop
over time is directly as functions of time, as in tradi-
tional forestry yield tables. The tables show the course
of volume per hectare over age (Fig. [l). They may be
parametrized by quantities specific to each stand, such
as site quality or initial density:

V =F(t,q),

where ¢ is time or age and ¢ is a parameterﬂ In addition
to volume V', other variables may be included in the
table, e.g., top height H, mean diameter D, trees per
hectare N.

2.2 Rates of change

For many applications the direct use of time functions is
sufficient. Yield tables are commonly used in forest plan-
ning systems to predict growth of unmanaged stands,
or under a small number of silvicultural prescriptions.
Their simplicity can be crucial in those uses. However,
in more demanding situations the direct approach has
important limitations.

Assume that at age 40 there is a thinning that re-
duces the standing volume (Fig.[2). The yield table does
not provide a forecast starting at the new point. Even
without interventions, a fluctuating environment causes

1A parameter is a quantity that, depending on circumstances,
may be considered either as a constant or as a variable. For in-
stance, variable while fitting a model and constant when applying
it.
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Figure 2: V = F(t), effect of interventions and perturba-
tions. Nominal yield curve, and thinning at age 40 (bottom),
or deviation in realized volume (top). Future development is
not specified.

deviations from the predicted trajectory. Once off the
curve, you are on your own.

600 T T T T

500 e

400

300

Volume (m3/ha)

200

100 |

RN
SN

Age (years)

Figure 3: Rates of change (arrows). Predictions follow the
arrows.

A more flexible alternative is to model rates of change.
Instead of V' = F(t), the model predicts an annual or
periodic increment

AV = f(V)

for any current V', and a time increment At of 1, 5, or
10 years, for instancd?]

Given the rate of change at any point, trajectories
are generated by iteration, accumulating increments

(Fig. [3):

AV =f(V) — V=FV,nAt) (numerically),
starting from any initial V' = V4 and for any multiple of

At.

20ther common notations include a rate per unit time —AA‘{ =

f(V), or the iteration V (¢t + At) = f[V(¢)] (with different f’s).
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2.3 State

AV = f(V) can only be a rough approximation, be-
cause volume increment does not depend only on cur-
rent volume, but varies also with stand density, and
possibly with height. A better description of the state
of the system is a list of state variables (state vector)
x = (H,N,V). There is one rate equation for each vari-
able:

AH = fi(H,N,V)

AN = fo(H,N,V)

AV = f3(H,N,V)

Or, in vector shorthand,
Az = f(x) .

If you are not comfortable with vectors, think of x
as simply the top height H, and ignore the rest of this
subsection. The later examples use top height growth,
which is assumed to be independent of stand density or
other stand characteristics. A single equation AH =
f(H) is then sufficient.

Some other transformation of the state could be used
as well. For instance, the state vector (B,S, H) con-
tains essentially the same information, with basal area
B and average spacing S. Other variables of interest
can be obtained from the state through output func-
tions, such as a simple volume relationship V = 0.4BH,
or more complex estimates of ecosystem services. The
rate equations might also include input functions, such
as representations of a fluctuating environment through
time-dependent climatic variables.

2.4 Discrete time

Finite intervals At are usually dictated by the re-
measurement periods present in the data, e.g., 1, 2, 5,
or 10 years, depending on the species growth rate. An-
nual or periodic rate of change equations are easy to un-
derstand and use. Projections are generated by simple
arithmetic, * = F(xo,nAt) is obtained by iteratively
adding Az = f(x) n times.

A disadvantage is that irregular measurement inter-
vals waste information or require questionable approxi-
mations. And projections are limited to a discrete set
of times, multiples of At. This may be inconvenient in
some applications, including sub-annual estimation in
fast-growing species.

2.5 Continuous time, ODEs

An alternative is to model in continuous time. Let us
use the rate of change per unit time

Ax
AL = f(x)

and think of a very small At. Then, the “instantaneous”
rate of change is modeled by an (ordinary) differential
equation, ODE,

dx

— = f(x) .

g @
This equation can be integrated analytically or numer-
ically to project any state xy at time ¢y to the state at
any other time t:

:B:F(CC(),t*to) .

This is sometimes called a trajectory or a transition func-
tiorﬂ Fig. |4] shows observed trajectories in a (B, .S, H)
state space.

Figure 4: Observed trajectories of forest plantations in a
three-dimensional state space. Left: Radiata pine in New
Zealand. Right: Interior spruce in British Columbia. Thin-
nings are jumps from one trajectory to another.

Cohort or individual-tree models contain more state
variables (possibly hundreds), but the concepts are the
same.

The trick of using rates of change instead of functions
of time can be attributed to Isaac Newton and is taken
for granted in physics and engineering. Physics appli-
cations have some peculiarities specific to them. The
fundamental principles were abstracted and generalized
by System Theory in the mid-20th Century.

3  STATISTICS

3.1 Parameter estimation

Once the (deterministic) model is formulated, it is neces-
sary to estimate parameter values to fit the data. Some-
times, ad-hoc methods are used, prioritizing convenience
or computational feasibility. A more reasoned approach
requires a model for the variability or uncertainty. A

3V. I. Arnold (“Ordinary Differential Equations”, The MIT
Press, 1973) reverses this point of view. He considers the set of all
the trajectories, called a “flow”, as the more fundamental concept,
and derives the theory of ODEs from that.
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probabilistic (stochastic, statistical) component on top
of the deterministic part.

Given the statistical model, one typically finds the
probability of generating the observed data for given pa-
rameter values. That is the likelihood function, used for
obtaining maximum-likelihood (ML) or Bayesian param-
eter estimates.

Experience suggests that frequently the realism of the
stochastic component makes little difference. An over-
elaborate statistical model can be counterproductive,
wasting information in estimating the stochastic part at
the expense of precision in the predictions.

3.2 Observation error

It is still common to assume that the trajectory pre-
dicted by the dynamic model is exact and that there
are only errors in the observations. The model, e.g., an
ODE, predicts values z(t;) at a set of observation times
ti,ts,...,t,. But one observes

yi = x(t:) +ei s

where the ¢; are usually assumed to be identically and
independently distributed, often Normal, with mean Oﬂ

3.3 Process noise, SDEs

More recently, in some applications the process is viewed
as noisy, with the trajectories x(t) subject to perturba-
tions or uncertainty (Fig. [5)). This leads to stochastic
differential equations (SDEs).

An SDE is an ODE perturbed by noise, such as

& — @)+ gl
where w(t) is “white noise” and g(x) is a scale factor.
The scale factor may or may not depend on the state x.
White noise is characterized by having the same distri-
bution with mean 0 for every ¢, and being uncorrelated
for any two different t’s.

This notation, a Langevin equation, is commonly used
by physicists and is perhaps easiest to understand. But
completely uncorrelated noise has some weird proper-
ties, like being non-differentiable and having an infinite
variance. Thus, in mathematics and statistics it is pre-
ferred to work with the cumulative noise W (t), called a

4For more than one dimension, think of these variables as vec-
tors. In that case, only some of the components of x might be
observed. In general, one can write

yi = hlz(t;)] + &

for some observation function h() such that the dimension of y
may be less than the dimension of x.
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Figure 5: Sources of error in a height trajectory. The dashed
blue curve is the ODE prediction. Disturbances (process
noise) lead to the solid red curve. The (disturbed) process
is observed at a finite set of times, possibly with observation
errors.

Brownian motion or Wiener process, and to write the
SDE in terms of differentials:

dX(t) = fIX ()] dt + g[X (t)] dW(¢) .

The capital letters emphasize the fact that X (¢) and
W (t) are random variables.

Still, there are technicalities related to the definition
of the integral of the second term (Ito and Stratonovich
integrals), unless g does not depend on X where the def-
initions coincide. Langevin and others formulated SDEs
to simplify the approach of Einstein in his famous pa-
per of 1905 on Brownian motion. Hotelling used SDEs
for logistic growth in 1927ﬂ Not until the middle of
the Century it was found that a rigorous mathematical
treatment was surprisingly subtle and complex. How-
ever, for modeling applications, an intuitive understand-
ing should suffice.

Again, all this can be generalized to vectors. Obser-
vation errors can be included as discussed before.

4 EXAMPLE

4.1 Height growth. Reducible SDEs

Linear SDEs are some of the few easily tractable mathe-
matically. Fortunately, practically all growth equations
can be reduced to a linear ODE/SDE through some
transformation of the state variable. We shall use the
R package resde, which computes ML estimates for re-
ducible univariate SDEs. The package is available in the
official R repository and converts the ML problem into

5Harold Hotelling, “Differential Equations Subject to Error,
and Population Estimates”, Journal of the American Statistical
Association 22, 283-314, 1927.
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the minimization of a sum of squares. This is more effi-
cient and reliable than using general-purpose optimiza-
tion routines.

The general model form in resde is a linear SDE

dY = (ﬂo —‘r,BlY) dt—l—O'de,

where Y is some transformation Y = ¢(X) of the vari-
able of interest X. The observations z; can have errors
according to

o(xi) =Y (t:) + omei

(subscript p stands for process and m for measurement).
The examples use a Richards ODE, which is linear in
a power transformation of H:

dH®
dt

=b(a®— H°) .

Expanding the derivative on the left-hand side and re-
arranging gives the more familiar form
dH ey

l1—c b

It is shown first how to fit the model for a single tree
or stand. Then, we estimate a site index model, where
a growth model is fitted simultaneously to many stands,
with a site-dependent parameter that varies among the
individual stands.

4.2 Single tree or stand

Install and load resde from the official CRAN reposi-
tory. The package has two main functions, sdemodel ()
specifies the model form, and sdefit() performs the
ML estimation.

Establish the correspondence between resde’s nota-
tion

AY = (Bo + A1Y) dt + o AW

and our

dH® = b(a® — H°) dt + o, AW -

mymodel <- sdemodel(phi = “x"c, betal =
“b*a”c, betal = “-b)

These arguments are R formulas, indicated by ~. Keep
the defaults for the rest.

Extract tree number 301 from the Loblolly data set
that comes standard with R:

1ob301 <- Loblolly[Loblolly$Seed == 301, ]

Seed is the name of the column with the tree identifiers,
or stand identifiers if we assume that the data corre-
sponds to stand heights.

Now run the estimation procedure, indicating the
model, data columns, and initial parameter values:

fit <- sdefit(mymodel, x="height", t="age",
data=1ob301, start=c(a=60, b=0.1, c=1))
fit

The list £it contains fit statistics, and ML estimates for
a,b,c,op,, and op,.

4.3 A site index model

We use the same model form, already stored in mymodel.
But now we fit the 14 trees (or stands) in the Loblolly
data set simultaneously.

For this example, assume that the asymptote a is a
local site-dependent parameter, different for each stand.
The other parameters are global, common to all the
stands. This generates so-called anamorphic site index
curves, where the stand curves are proportional along
the H-axis.

We consider two ways of handling local parameters:

(a) Fixed effects. The local is a fixed unknown value
for each stand.

alocalF <- sdefit(mymodel, x="height",
t="age", data=Loblolly, unit="Seed",
local=c(a=70), global=c(b=0.1, c=0.5))

unit is the column with the stand identifiers. The
parameters and starting values are separated into
locals and globals.

(b) Mixed effects. The local is thought of as “random”,
in some sense, normally distributed across stands.
The fitting command is the same as before, except
that method is specified as “nlme” instead of the
“nls” default:

alocalM <- sdefit(mymodel, x="height",
t="age", data=Loblolly, unit="Seed",
local=c(a=70), global=c(b=0.1, c=0.5),
method="nlme")

Estimation methods and parametrizations can be com-
pared with the help of the likelihood values and AIC and
BIC statistics returned by sdefit.

For more details and examples, see the resde docu-
mentation.

5 SUMMARY

e It is advantageous to model rates of change instead
of direct functions of time.

e Continuous time (ODEs) may be less obvious than
discrete time (finite differences), but it is often more
convenient.
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e Rational parameter estimation requires a (simple)
stochastic model.

e Process variability or uncertainty in dynamical sys-
tems is represented by SDEs.

e The mathematical theory of SDEs is subtle and
complex but rarely needed for applications.

e Software like resde makes modeling with SDEs ac-
cessible.
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