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Abstract. Prediction of soil organic carbon (SOC) at unsampled locations is central to statistical
modeling of regional SOC stocks. This is often accomplished by applying geostatistical techniques to plot
inventory data. However, in many cases inventory data is sparsely sampled (<0.1 plots/km2) relative to
the region of interest, and it is unknown if geostatistics provides any advantage. Our objective was to
test whether modeling spatial autocorrelation, in multivariate and univariate predictive models, improved
estimates of SOC at prediction locations based on sparsely-sampled inventory data. We conducted our
study using a dataset sampled across all forested land in the Coastal Plain physiographic province of New
Jersey, USA. We considered five models for predicting SOC, two linear regression models (intercept only
and multiple regression with predictor variables), ordinary kriging (a univariate spatial approach), and
two multivariate spatial methods (regression kriging and co-kriging). We conducted a simulation study in
which we compared the predictive performance (in terms of root mean squared error) of all five models.
Our results suggest that our sparsely-sampled SOC data exhibits no spatial structure (Morans I =0.05,
p=0.39), though several of the covariates are spatially autocorrelated. Multiple linear regression had the
best performance in the simulation study, while co-kriging performed the worst. Our results suggest that
when inventory data is dispersed across the region of interest, modeling spatial autocorrelation does not
provide significant advantage for predicting SOC at unsampled locations. However, it is unknown whether
this autocorrelation does not exist at broad scales, or if sparse sampling strategies are unable to detect
it. We conclude that in these situations, multiple regression provides a straightforward alternative to
predicting SOC for mapping studies, but that more work on the spatial structure of soil carbon across
multiple scales is needed.
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1 Introduction

Globally, forests are thought to store approximately
861 petagrams of carbon (Pg C), with about 44% of
this mass found in forest soils (Pan et al., 2011). The
large capacity of the forest soil pool to sequester carbon
makes its management a viable option for mitigating the
effects of atmospheric carbon emissions (Goodale et al.,
2002; Lal, 2008). Naturally, there is considerable in-
terest in the quantification of forest soil organic carbon
(SOC) pools for carbon monitoring projects and the de-
velopment of market-based carbon accounting schemes.
There is a need for methodologies that produce con-
sistent results with a degree of accuracy acceptable to

policymakers (Chen et al., 2000a; Houghton, 2003; Shv-
idenko et al., 2010).

Forest carbon stocks are typically measured using for-
est inventories, and areal estimates are gained by “scal-
ing up” these measurements across the region of interest
(Birdsey, 1992; Goodale et al., 2002). However, these
data are often sparse relative to the extent of the stock
estimate. In the case of forests, soil carbon sampling is
often excluded from large inventory efforts due to the
additional time and cost needed to collect and process
samples relative to aboveground forest measurements.
As a result, regional estimates of forest soil carbon stor-
age are often highly uncertain, leading to wide disparity
among the literature. For example, estimates of carbon
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stocks for European forest soils have ranged from 3 Pg
C to as high as 79 Pg C; a difference that constitutes
approximately 9% of the global forest soil carbon stock
(Cannell et al., 1992; Goodale et al., 2002; Liski et al.,
2002; Jones et al., 2005).

Developing a regional soil carbon stock from inven-
tory data involves prediction of the response variable
at many unsampled locations (i.e., all squares of a grid
covering the region of interest). Spatial autocorrelation,
where nearby points are on average more similar than
points that are further apart, is a common property in
environmental datasets and, when present in inventory
data, may be leveraged to increase prediction accuracy
(Simbahan et al., 2006). Spatial autocorrelation may
be summarized by computing the semivariance, a mea-
sure of spatial similarity, and plotting these values for all
pair-wise combinations of the sampling points as a func-
tion of distance (Goovaerts, 1997). These plots, typi-
cally referred to as the empirical semivariogram, may
be fitted with “theoretical” semivariogram models, such
as Matérn class or spherical functions. Kriging meth-
ods, a widely used class of spatial interpolators, incor-
porate such theoretical semivariogram models to weight
predictions at unsampled locations (Isaaks and Srivas-
tava 1989). This feature, combined with the fact that
these methods may be extended to model spatial co-
variance between the response and predictor variables,
makes kriging a logical approach for the prediction of
soil carbon.

Geostatistical techniques have been successfully ap-
plied to predict soil organic carbon at unsampled lo-
cations, based on plot inventory data, at a variety of
spatial scales. Several studies are available for agricul-
tural fields, where very dense sampling regimes (>400
plots/km2) can be achieved, and clear patterns of spa-
tial variation are often elucidated (Chen et al., 2000a;
Lark, 2000; Mueller and Pierce, 2003; Simbahan et al.,
2006). In such situations, geostatistical models have
been shown to offer considerable improvement in pre-
diction results when compared to non-spatial regression
models (Simbahan et al., 2006).

Fewer examples are available for regional soil carbon
mapping, where reduced sampling density may make
spatial autocorrelation more difficult to detect. Still,
several studies have shown an increase in prediction
accuracy when incorporating geostatistical techniques.
Liski and Westman (1997) used block kriging to interpo-
late measurements of soil organic carbon taken as part
of the national forest inventory (NFI) in Finland, and
detected significant spatial structure in these clustered,
but densely sampled (∼5 plots/km2) data. More re-
cently Mishra et al. (2010) compared the performance
of several geostatistical methods, including geographi-
cally weighted regression and regression kriging, to mul-

tiple regression models for predicting SOC across a het-
erogeneous region in the northern Midwestern United
States. Their results suggest a significant increase in
prediction accuracy (∼22% relative improvement) when
incorporating spatial error into the model. Other ex-
amples where significant spatial structure was detected
and used to model SOC are available for grasslands in
Ireland (McGrath and Zhang 2003, Zhang et al., 2011)
and agricultural landscapes in the karst region of China
(Liu et al., 2006; Zhang et al., 2012).

While the aforementioned studies modeled SOC
across large spatial extents, most took advantage of rea-
sonably dense plot inventory data (≥0.1 plots/km2), and
in the case of Liski and Westman (1997) approximately
5 plots/km2. The exception is the study by Mishra et
al. (2010), which utilized sparsely sampled data (∼0.003
plots/km2), but modeled SOC across a heterogeneous
landscape with several major cover types and a pro-
nounced latitudinal gradient (from the upper Peninsula
of Michigan south to Kentucky, USA), both of which
may exert strong controls on SOC distribution. When
the region of interest comprises a single cover class, as
it would in forestry applications, or does not span many
degrees of latitude, it is less clear that modeling spa-
tial autocorrelation presents any advantage for predict-
ing forest SOC. In fact, a few studies provide evidence
suggesting this is the case. Studies in tropical forests
that examined forest SOC across multiple scales, in trop-
ical dry forests in the West Indies (Gonzalez and Zak,
1994) and in the Brazilian Amazon (Cerri et al., 2000;
Bernoux et al., 2006), suggest that the spatial structure
is limited to fine scales only.

In this study, our primary objective was to assess
whether incorporating spatial autocorrelation into mod-
els for predicting forest soil organic carbon at unsampled
locations improved results for sparsely sampled (<0.1
plots/km2) inventory data. To meet our objective, we
compared the performance of both univariate and mul-
tivariate spatial models to similar linear regression mod-
els. We predicted that the spatial models would perform
the best when predicting forest SOC at independent val-
idation locations, despite the sparsity of our sampling
locations relative to the region of interest. To test this
prediction, we developed a simple simulation experiment
to directly compare the predictive accuracy of all models
considered in the experiment.

2 Methods

2.1 Study region This study was conducted on the
Coastal Plain physiographic province of New Jersey,
USA (Fig. 1). This region is largely forested, and
the remaining landcover mainly consists of residential
and agricultural development. Three major upland for-
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Figure 1: Distribution of sampling locations and primary forest cover types across the study region in New Jersey,
USA.

est communities dominate the region: (1) pitch pine
(Pinus rigida) forest, (2) oak (Quercus spp.) forest,
and (3) mixed communities that span a gradient be-
tween these two classes (Hasse and Lathrop, 2010). On
the inner coastal plain, these communities mix with
other hardwood species such as American beech (Fa-
gus grandifolia) and hickory (Carya) spp. Forested
wetlands are common along river courses or in low ar-
eas. Most of these are hardwood swamps dominated
by red maple (Acer rubrum), sweetgum (Liquidambar
styraciflua), and blackgum (Nyssa sylvatica). However,
forested peat bogs with pure stands of Atlantic white
cedar (Chamaecyparis thyoides) are also present across

the landscape. Soils in the region are largely typic Hap-
ludults and Quartzisappamments of marine or alluvial
origin (Tedrow, 1986). Soils range from very poorly to
excessively drained, and are primarily sandy in texture.
However, clayey and mucky soils are frequent in wet ar-
eas. The total area of the study region (i.e., all forested
land in New Jersey’s Coastal Plain) is approximately
4,522 km2.

2.2 The datasets We considered two plot inventory
datasets for this study. The primary dataset, hereafter
referred to as the “small” dataset consists of 62 plots,
and possesses measurements for forest soil organic car-
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bon and all of the covariates used in the model ex-
periments. This corresponds to a sampling density of
approximately 0.013 plots/km2. The “large” dataset
consists of 120 plots and contains measurements of the
model covariates only, and was used for the co-kriging
analysis. The small dataset is a subset of the large
dataset, so those 62 plots are co-located and present
in each. The plots were sampled in a stratified random
design across the landscape, based on both forest com-
munity type and soil drainage class (Fig. 1).

At each sampling location, soil was collected from
three depth intervals: 0-10 cm, 10-20 cm, and 20-30
cm. At each depth interval bulk density was sampled
using the core method (Blake and Hartge, 1986), and a
second sample was taken for laboratory analysis. Bulk
density samples were dried for 24 hours at 105 ◦C and
passed through a 2 mm sieve to remove the coarse frag-
ments (i.e., gravel and litter material) that are not a
component of the soil organic matter pool. The analyt-
ical samples were air dried for at least 48 hours, sieved
to 2 mm, then ground into powder with a mortar and
pestle and homogenized.

Percent soil organic carbon was estimated by elemen-
tal (CHN) analysis on a subsample of the air-dried ana-
lytical sample. A second subsample was used to measure
percent soil organic matter (SOM) by loss-on-ignition
(LOI). These data were recorded for all 120 plots, and
used as a covariate in the multivariate models. SOM typ-
ically has a significant relationship with SOC, and has
been used as a predictor for soil organic carbon in several
studies (Konen et al., 2002; De Vos et al., 2005). Sam-
ples were placed in a Lindberg muffle furnace (General
Signal, Watertown, WI, USA) at 400 ◦C for 24 hours.
Both percent SOC and percent SOM were converted to
stock estimates using the following formula:

S = P ×BD × V × g (1)

where S is the stock estimate (Mg·ha−1), P is a percent
measurement of SOC or SOM, BD is soil bulk density
(g·cm−3), V is the volume of a 1 ha rectangle with a
depth of 30 cm, and g is a unit scaling constant.

2.3 Model covariates In addition to the plot mea-
sured soil organic matter data, we utilized four covari-
ates extracted from remote sensing and GIS datasets:
normalized difference vegetation index (NDVI), band 2
of the “tasseled cap” transform (TC2), compound to-
pographic index (CTI), and elevation (ELEV). These
variables represent a reasonable set of potential predic-
tors for soil organic carbon, and are similar to covariates
incorporated by several recent regional SOC mapping
studies (McGrath and Zhang, 2003; Mishra et al., 2010;
Vasques et al., 2012; Zhang et al., 2012). NDVI and
TC2, the “greenness” band of the tasseled cap trans-

form, are both related to net photosynthetic output,
which has a theoretical relationship to inputs into the
soil organic carbon pool (Chapin et al., 2002). Terrain
position can have a strong influence on soil organic car-
bon storage, so we included two related variables: eleva-
tion and estimates of the compound topographic index
(CTI). CTI is a steady state wetness index designed to
model soil water content based on values of slope and
flow direction extracted from a digital elevation model
(Moore et al., 1991). It has been shown to correlate
with soil moisture content, which may exert influence
over soil organic carbon formation and storage (Barling
et al., 1994).

To extract the NDVI and TC2 measurements for
our sampling locations, cloud-free Landsat TM scenes
(http://glovis.usgs.gov) were downloaded for a single
date during the study, July 14th 2011, and tiled into a
mosaic of the study region. We used a Level 1 data prod-
uct from the Landsat 5 thematic mapper instrument
that had been previously corrected for radiometric error
and terrain variability, geo-referenced, and converted to
Universal Transverse Mercator (UTM) projection. The
Erdas Imagine software package (Leica Geosystems, At-
lanta, GA, USA) and ArcGIS (ESRI, Redlands, CA)
were used to separately generate rasters for both vari-
ables with a 30-m x 30-m grid cell size for all forested
land within the study region, and to extract values of
NDVI and TC2 for our sampling locations. Both the
elevation and CTI data were derived from a 10-m dig-
ital elevation model (DEM) provided by the Center of
Remote Sensing and Spatial Analysis (CRSSA), Rut-
gers University. Compound topographic index was cal-
culated for all cells in the DEM using ArcGIS.

2.4 Modeling approaches Our objective in this
study was to test whether explicitly modeling spatial
autocorrelation improved prediction accuracy for our
sparsely sampled forest SOC data. To accomplish this
we considered five models that represent spatial and non-
spatial approaches for both univariate (SOC data only)
and multivariate (incorporating the predictor variables)
cases (Tab. 1). This design allowed us to both examine
the effect of modeling spatial autocorrelation only, in the
case of the univariate spatial model (OK), as well as the
influence of the spatial variance term for two different
multivariate approaches.

Our non-spatial approach was linear regression models
(MLR) of the general form:

Y = α+ βj ∗X (2)

Where Y is soil organic carbon, X is an n x p matrix
of the predictor variables, α is the intercept, and βj is
a vector of the slope parameters associated with the j th
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Table 1: Dimensions and spatial variance assumptions
for the five predictive models considered in this study.

Model Dimensions Spatial
variance
term

Intercept only
regression (IR)

univariate no

Multiple linear
regression (MLR)

multivariate no

Ordinary kriging (OK) univariate yes
Regression kriging (RK) multivariate yes
Co-kriging (COK) multivariate yes

covariate. In the case of the intercept only model (IR),
α is the only parameter.

All three of the spatial models we incorporated are
variations on the kriging algorithm, where spatial pre-
diction is accomplished as a function of the theoretical
semivariogram; a model fitted to a plot of semivariance
values against distance for each pair-wise combination
of sampling locations in the dataset (i.e., the empirical
variogram) (Goovaerts 1997). For the univariate model
(OK), the linear estimator used to predict new values of
the response variable, for some set of locations u, takes
the form:

Z∗ (u) = m (u) +

n(u)∑
α=1

λα (u) [(Z (uα) −m (u)] (3)

Where Z*(u) is the predicted value of the response vari-
able at new locations, Z (uα) are the known values of
the response at sampled locations, m(u) is the mean re-
sponse, and the λα’s are the “kriging weights” for each
sampled location, that are determined by the semivari-
ogram model (Goovaerts, 1997; Simbahan et al., 2006).
In the case of ordinary kriging, note that the mean is
taken to be a function of the locations u so that it is
allowed to vary across the region (Isaaks and Srivastava,
1989).

In addition to the univariate OK model, we consid-
ered two different approaches for incorporating covari-
ates into spatial models. The first of these is regression
kriging (RK), which is very similar to OK in principle.
The difference is that the residuals of the response and
predictor variables are interpolated, and in this way co-
varying spatial patterns are indirectly incorporated into
the analysis (Odeh et al., 1994; Hengl et al., 2004; Sim-
bahan et al., 2006). For prediction at new locations, the
spatially predicted residuals must be added back on to
the mean trend, resulting in the following linear estima-

tor for Z∗ (u):

Z∗ (u) =

p∑
k=0

βkqk (u) +

n(u)∑
α=1

λαe(u) (4)

Where βk are the regression parameters associated with
the predictors qk, p is the number of predictors, and
e (u)are the residuals between the response and covari-
ables (Hengl et al., 2003, 2004). The rest of the terms
in the model are as defined above. We wish to note that
the technique we outline here is one of several closely
related approaches that have all variously been termed
“regression kriging”, “kriging with external drift”, and
“kriging with a trend” (Goovaerts, 1997; Wackernagel,
1998; Chiles and Delfiner, 1999). We follow Hengl et al.
(2004) in describing the method outlined above, where
fitting the non-spatial trend and the spatial interpolation
of the residuals are accomplished separately, as regres-
sion kriging.

The second multivariate method considered here is
co-kriging (COK), which represents a particularly flex-
ible approach to modeling multivariate geostatistical
data. Rather than interpolating residuals between the
response and predictor variables, COK starts with the
fitting of both direct and cross variograms for all vari-
ables in the model, typically with a linear model of core-
gionalization (Gelfand et al., 2004). This variogram sys-
tem is employed to weight predictions of the response
variable at new locations, according to the following lin-
ear estimator:

Z∗ (u) = m (u) +

n1(u)∑
α1=1

λα1
(u) [Z1 (uα1

) −m1 (uα1
)]

+

Nv∑
i=2

ni(u)∑
αi=1

λαi (u) [Zi (uαi) −mi (uαi)] (5)

Where Z*(u) is the predicted value of the response vari-
able at new locations, λα1

is the weight assigned to the re-
sponse variable Z1 and λαi

represents the weights for the
covariates Zi(Goovaerts, 1997; Simbahan et al., 2006).
In this model, the expected values mi are subtracted
from the data, indicating we consider the spatial asso-
ciation between the response and predictor variables to
be a multivariate stationary process.

Co-kriging is appropriate for situations in which a
response variable that is expensive to measure is sam-
pled sparsely, while several “cheap” covariates have been
sampled in the same as well as additional locations. In
our case, we have the “large” dataset available, which
contains 120 measurements of all of the model covari-
ates. These additional values are used to fit the direct
and cross variograms during co-kriging, along with the
62 observations which also contain measurements of the
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response variable. This situation lends itself well to the
co-kriging approach.

2.5 Model comparison simulation To compare the
performance of the five models for predicting soil or-
ganic carbon, we devised a simulation that compared
predicted vs. actual results for independent validation
data. We first randomly divided the “small” dataset
into fitting and validation datasets. We reserved 25%
of the data for validation (N=15) and reserved the re-
maining 47 plots to fit the models. We split the data
this way, rather than using an even split, because ini-
tial runs of several kriging models resulted in undefined
covariance functions when N=31 for the model fitting
data. A fitting set of 47 plots translates to a density of
approximately 0.01 plots/km2 across the study region.
In the case of the COK model, the additional covariate
observations in the “large” dataset were included in the
model fitting, as the structure of the coregionalization
model permits this design. To increase normality, all
variables were log-transformed prior to fitting the mod-
els. Each model was used to predict SOC for the valida-
tion dataset, and we computed root mean squared error
(RMSE) to assess model performance. Prior to com-
puting RMSE, predicted values of log(SOC) were back-
transformed into their original units. To avoid biasing
results by selecting a single, favorable fitting dataset
we ran this simulation for 10,000 iterations and tracked
mean RMSE for the entire study. This is especially rel-
evant for the geostatistical models, as relatively sparse
datasets such as ours may possess spatial autocorrela-
tion with some configurations but not with others.

To initialize the OK and COK models, we supplied
values for the sill, range, and nugget parameters de-
rived by fitting a Matérn class covariance function to the
empirical variograms for soil organic carbon in the full
dataset. In the co-kriging model, these values were used
to initialize the parameters for all direct and cross vari-
ograms. In the case of RK, we supplied initial parameter
values from a theoretical variogram fitted to the residu-
als of SOC and the model covariates. All model fitting
was accomplished with ordinary least squares. A Matérn
covariance function was selected because it is a particu-
larly flexible model for spatial autocorrelation, and is a
popular choice in current geostatistical research (Stein,
1999; Finley et al., 2011). The simulation was conducted
using the R statistical computing environment. Vari-
ogram fitting, OK, and RK were conducted using the
geoR package (Ribeiro and Diggle, 2001), and co-kriging
was accomplished in the gstat package (Pebesma, 2004).

Table 2: Mean (µ), standard deviation (σ2), and slope
parameters (βj) and correlation coefficients (ρ) for the
five covariates and SOC.

µ σ2 βj ρ
SOC (Mg·ha−1) 65.93 65.67 ** **
SOM (Mg·ha−1) 113.17 153.66 0.678 0.708
NDVI 0.61 0.05 0.395 0.103
TC2 29.54 9.13 -0.507 0.046
CTI 9.99 2.48 0.332 0.106
ELEV (m) 26.35 12.25 0.157 0.098

3 Results

3.1 Exploratory analysis Table 2 presents the
mean and standard deviation for all variables, as well
as the regression parameters for the MLR model and
the correlation coefficients between log(SOC) and each
of the covariates for the full dataset (N=62). Soil or-
ganic matter is highly correlated with SOC (ρ=0.708),
while the remaining variables are not notably correlated
(ρ<0.2 for each). For the intercept only model, α =
3.59.

Examination of the spatial structure in the SOC
dataset does not reveal any spatial autocorrelation
among the 62 sample sites (Moran’s I =-0.05, p=0.39).
However, slight positive spatial autocorrelation was
noted for the following covariates: TC2 (Moran’s
I =0.06, p=0.04), CTI (Moran’s I =0.05, p=0.09), and
ELEV (Moran’s I =0.036, p<0.001). Both SOM and
NDVI do not possess significant spatial autocorrelation
(p>0.10). The empirical variograms, as well as the fit-
ted Matérn covariance functions (i.e., the theoretical
variograms), agree with these results (Fig. 2). TC2,
CTI, and ELEV show an increase in semivariance across
distance, each with an asymptotic range > 120,000 m.
However, note that there is considerable residual error
between the empirical semivariance values and the fitted
covariance model. NDVI suggests an increase in semi-
variance, but the scale of the y-axis for this plot indicates
a minute change across the effective range. Both SOC
and SOM do not show spatial structure in either the
empirical or theoretical semivariograms.

3.2 Model comparison experiment The results
of the simulation experiment show that the MLR model
provided the most accurate predictions for the validation
data, in terms of mean RMSE over the 10,000 trials in
the simulation (Tab. 3). OK was the worst performing
model, followed by COK. These results correspond with
the general lack of structure in the SOC data described
above. RK had a similar, though slightly inferior, per-
formance relative to MLR. This is not surprising, given
that the RK estimator is simply an extension of that

mailto://bclough84@gmail.com
http://mcfns.com


Clough and Green (2013)/Math.Comput. For.Nat.-Res. Sci. Vol. 5, Issue 2, pp. 115–125/http://mcfns.com 121

0 40000 80000 120000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

SOC

se
m

iv
ar

ia
nc

e

0 40000 80000 120000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

SOM

0 40000 80000 120000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

NDVI

0 40000 80000 120000

0.
00

0.
10

0.
20

0.
30

TC2

se
m

iv
ar

ia
nc

e

0 40000 80000 120000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

CTI

Distance (m)
0 40000 80000 120000

0.
0

0.
1

0.
2

0.
3

0.
4

ELEV

Figure 2: Empirical (open circles) and theoretical (solid lines) variograms for the response (SOC) and the five
covariates.

of MLR. Comparing the two univariate methods also
suggests a disadvantage to modeling spatial autocorre-
lation, as the IR model reduced error when compared to
the OK model.

4 Discussion

In contrast to studies where prediction of SOC is ac-
complished with relatively dense plot inventories (>0.1
plots/km2) (e.g., Liski and Westman, 1997; Lark, 2000;
McGrath and Zhang, 2003; Simbahan et al., 2006; Zhang
et al,. 2012), we found that modeling spatial autocorre-
lation did not improve prediction accuracy at unsampled
locations for our sparse inventory data. Both variogram
analysis and Moran’s I statistics suggest a lack of spa-
tial autocorrelation in our soil carbon data. While spa-
tial structure was noted in some of the covariates, the
lack of spatial structure in SOC resulted in inferior per-
formance of the spatial models relative to MLR. How-
ever, note that the RMSE of all models is large relative

Table 3: Results of the simulation experiment. Note
that this table presents back-transformed values of for-
est SOC. Mean RMSE refers to the mean root mean
squared error over the 10,000 trials in the simulation
experiment. RI refers to the relative improvement in
predictive performance of each model, when compared
to the worst performing method (Ordinary Kriging).

Model Mean
RMSE
(Mg·ha−1)

RI

(%)
Intercept only regression (IR) 59.65 12.1
Multiple regression (MLR) 51.52 24.1
Ordinary kriging (OK) 67.9 –
Regression kriging (RK) 53.43 21.3
Co-kriging (CK) 61.01 10.1
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to the mean of soil carbon for the whole dataset (65.9
Mg·ha−1), suggesting that there is a high degree of un-
certainty in all five models.

Generally, these results highlight the difficulties of
spatial prediction of forest soil carbon. A number of
studies have identified spatial structure at local scales in
a variety of forest types, with variogram range param-
eters from 4-500 meters (e.g., Robertson et al., 1993;
Lister et al., 2000; Wang et al., 2002; Garten Jr. et al.,
2007; Worsham et al., 2010). It is not known, however, if
these fine-scale spatial dynamics are meaningful to pre-
dictions for regional datasets, where distances between
plots may range from one to hundreds of kilometers.
Further, it remains unclear whether spatial autocorre-
lation at broad scales is an important factor in under-
standing regional forest carbon dynamics. Our results
suggest otherwise, as do those of the few other studies
that have looked at this question (Liski and Westman,
1997; Cerri et al., 2000; Bernoux et al., 2006).

In our data, determining whether regional forest SOC
data truly exhibits no spatial structure, or if this is the
result of a detectability issue caused by low sampling
densities, remains unclear. Assuming spatial structure
exists at the regional scale, describing it may require a
large number of observations relative to the region of
interest. While national forest inventories, such as the
US Forest Service’s Forest Inventory and Analysis (FIA)
program, may achieve the requisite densities for above-
ground measurements (Finley et al., 2007), collection
of data on soil variables is often only completed at a
fraction of these plots. Further, the ability to detect
spatial autocorrelation is influenced by the sampling de-
sign (Fortin et al., 1989). Thus, surveys may need to be
specifically designed to detect broad-scale spatial struc-
ture in forest soils.

Those studies which have detected regional spatial
autocorrelation in the soil organic pool have typically
done so over heterogeneous landscapes, spanning mul-
tiple cover classes (McGrath and Zhang, 2003; Mishra
et al., 2010; Vasques et al., 2010; Zhang et al., 2011).
In these contexts, the spatial structure of soil carbon is
influenced by other spatially-explicit dynamics, such as
patterns in land use and land cover, which may make
regional patterns easier to define (Vasques et al., 2012).
Modeling soil carbon over very large regions, such as
the northern portion of the Midwestern United States
(Mishra et al., 2010), also incorporates the effect of lat-
itudinal climate gradients which are well known to in-
fluence soil organic carbon (Chapin et al., 2002). In
this way, Mishra et al. detected an advantage to spatial
approaches (geographically weighted regression and re-
gression kriging) over multiple regression despite a very
low plot density (<0.001 plots/km2). In forestry appli-
cations, particularly across comparatively small regions

such as the Coastal Plain of New Jersey, there may be
fewer influences on the regional spatial structure of soil
organic carbon. However, additional studies in different
forest types will be necessary to determine if this is in
fact the case.

Incorporating covariates of soil carbon into predictive
models is a typical strategy, and one employed by al-
most all of the studies outlined here. In our case, four of
the five covariates we considered were not strongly cor-
related with forest SOC. These patterns may be unique
to our region in some ways. For instance, one would
expect a strong relationship between soil organic carbon
and elevation. However, the Coastal Plain of New Jersey
is a fairly low-relief landscape, and fully capturing the
covariance between SOC and elevation in an inventory
dataset may be particularly challenging.

Field measured soil organic matter was the one covari-
ate that was reasonably correlated with SOC, but given
that this variable was also sampled as part of our for-
est inventory it has limited usefulness for predicting soil
carbon at unsampled locations. For regression models,
it is generally necessary to have values for the covari-
ates at the prediction locations (i.e., for all cells of a
sampling grid in mapping applications). Methods based
on fitting coregionalization models, such as co-kriging,
are attractive in that they do not share this prerequi-
site (Goovaerts, 1997; Banerjee et al., 2004; Gelfand et
al., 2004). However, in the absence of spatial structure
in the response variable, these methods will likely yield
poor results, as was the case with our data. An alter-
native strategy is to model the spatial dynamics of the
covariates themselves. For example, soil organic matter
may be interpolated based on ancillary variables in order
to inform a sampling grid for soil carbon. However, this
introduces additional sources of uncertainty which may
propagate through to the final estimate of the response
variable.

The results of our study have applications for forest
SOC mapping projects, particularly where new inven-
tories are being established to accomplish these goals.
This may be especially relevant in developing coun-
tries, where international funding mechanisms such as
the United Nations’ Reducing Emissions from Deforesta-
tion and Degradation (REDD+) program has motivated
increased interest in managing forests to offset carbon
emissions (Edwards et al., 2010). Newly established for-
est inventories will be important for both gathering base-
line data on forest carbon stocks in these regions, and
for verifying gains in carbon sequestration (Maniatis and
Mollicone, 2010). Our results suggest that when plot
inventories are sparsely distributed (<0.1 plots/km2),
there is no spatial autocorrelation present in forest SOC
data, and as a result modeling spatial structure does not
result in increased prediction accuracy. In these cases,

mailto://bclough84@gmail.com
http://mcfns.com


Clough and Green (2013)/Math.Comput. For.Nat.-Res. Sci. Vol. 5, Issue 2, pp. 115–125/http://mcfns.com 123

multiple linear regression presents a straightforward al-
ternative, providing a set of reasonable covariates can be
identified for all prediction locations.

Taken in context with the existing literature on the
spatial dynamics of forest SOC, our work highlights the
need for more studies that explicitly model soil carbon
across a range of spatial scales. Without these data,
it remains unknown whether regional spatial autocorre-
lation does not exist or requires more dense sampling
schemes to detect. Further, our results are from but
one forest type, and it is not clear that the dynamics
we describe are generalizable to other forest ecosystems.
That all of our models provide a fairly poor fit to our
SOC data demonstrates just how challenging character-
izing uncertainty in regional soil carbon stocks can be.
Advanced statistical modeling techniques such as geo-
statistics present many appealing methods for the pre-
diction of forest soil carbon, but their utility is premised
on a set of assumptions that the available data may not
meet. We advocate that these methods are considered
for the prediction of forest carbon, and for SOC map-
ping studies, but only when their use is warranted by
the data.

5 Conclusions

When predicting soil organic carbon at unsampled lo-
cations based on sparse inventory datasets, it may be dif-
ficult to detect a significant degree of spatial autocorrela-
tion. This is especially true on homogeneous landscapes,
or for studies that only consider one cover type, as there
may be spatial structure associated with the correlation
between SOC density and land cover type. In such cases,
geostatistical models may be inappropriate, and multiple
linear regression offers an appealing and straightforward
alternative. Including covariates can increase the predic-
tive performance of statistical models. The best predic-
tors will not only be closely correlated with soil organic
carbon, but will be available for the full extent of the
study region. The results of our study have implications
for SOC mapping approaches using existing inventories,
where analytical efforts are constrained by data qual-
ity and availability, as well as for new sampling efforts
where resources are limited. Future work should look
to model spatial autocorrelation of soil carbon across
multiple scales, to fully characterize the relationship of
well-described local spatial structure to broad-scale, re-
gional patterns.
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