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Abstract. We evaluated two sets of equations for their predictive abilities for estimating biomass in-
crement using successively acquired airborne lidar and ground data collected on western lowlands of
the Kenai Peninsula in south-central Alaska. The first set included three base equations for estimating
biomass increment as a function of lidar metrics, and the remaining equations enhanced the three base
equations by considering the hierarchical structure of the data.

It is shown that the mixed effect framework substantially improved the accuracy and precision of biomass
increment prediction over a model without the plot effects that assume the observations are independent
for the area covered by two lidar acquisitions, 5 years apart from one another. On the average, root mean
square error values were reduced by 19.8% by using a plot-level random coefficient model that account
for the impacts of site (biophysical factors) on biomass increment on the western Kenai Peninsula.

Mixed effect models are effective statistical tools, but their effective application requires some sample
growth data. As such, we recommend two models for estimating biomass increment on the Kenai
Peninsula. If a subsample of ground data is available to predict the plot random intercept, the enhanced
model is suggested. In the absence of ground data, an alternative model a model without the plot effects
is suggested. Model coefficients are documented to facilitate development of a multi-part estimation
strategy which includes both decay and increment.
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1 Introduction

Information on forest biomass and its increment is
increasingly being used to guide the location of new
biomass processing plants (Andersen et al. 2011), quan-
tify wildlife habitat capability (Hyde et al. 2006), model
carbon balance and storage (Gough et al. 2008), de-
termine the components of forest fuels (Andersen et al.
2005), predict the effect of climate change on forest pro-
ductivity (Latta et al. 2009), and develop forest restora-
tion thinning and fire hazard management plans (Ed-

mons et al. 2000, Temesgen et al. 2007) and greenhouse
gas policy analysis (Baker et al. 2010).

Performing field measurement to quantify biomass
increment is time- and labor- intensive. Yet, there is a
need for accurate and up-to-date information on biomass
increment for sustainable forest management. Conven-
tionally, biomass increment models have used only ground
attributes as predictor variables. Recent studies, how-
ever, indicate that lidar may offer a quicker and more
cost-effective method of data collection with the poten-
tial not only to provide predictions for current status but
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also biomass increment (Bollands̊as et al. 2013, Hudak
et al. 2012, Meyer et al. 2013, and Næsset et al. 2013).

The use of small-footprint lidar for estimation of for-
est yield variables has been well-established in the lit-
erature. Much of the research into the use of lidar for
forest applications has assessed variables such as tree
height, volume and biomass. Many studies have used
regression analysis to relate lidar-derived metrics to a
large number of additional field-based inventory vari-
ables including basal area, mean diameter, dominant
height, stem density, and vegetation cover (Means et
al, 2000; Naesset 2002, Goerndt et al. 2010). Most
studies have found strong correlation between lidar de-
rived variables and the inventory parameters obtained
from ground-based measurements (Nelson et al, 1988;
Nilsson, 1996; Næsset and Bjerknes, 2001; Næsset and
Økland, 2002; Donoghue and Watt, 2006). However,
few studies have attempted to quantify biomass incre-
ment using repeated lidar measurements (Bollands̊as et
al. 2013, Hudak et al. 2012, Meyer et al. 2013, Næsset
et al. 2013, and McRoberts et al. 2014).

Estimating biomass increment is a complicated task
with the potential for large errors where model errors
could be larger than the predicted increment (Yu et al
2004). While Yu et al (2006) reported strong correla-
tions (0.68) between selected lidar metrics and stand
growth, Næsset and Gobakken (2005) reported a weak
correlation between these variables, and their compari-
son with field data suggested increment predictions us-
ing lidar had limited accuracy and precision. Common
findings from both these studies are that biomass incre-
ment predictions are extremely variable and prediction
accuracy depends on the fitting techniques used.

Estimation of biomass increment becomes even more
problematic when one considers the spatial variability
over the landscape. Methods used for considering wide
variation and the hierarchical structure of data include
mixed effects models and repeated measure analysis. Dis-
cussions concerning the effect of data structure on the
predictive abilities of biomass increment are infrequent
in the literature. Comparison across varying vegetation
type and ecological regions were undertaken by Breiden-
bach et al (2007, 2008). Despite the growing research in-
terest in change estimation, detailed analyses that quan-
tify the gains obtained by using lidar metrics and mixed
effect models are lacking. Also lacking are analyses that
examine the ability, efficiency and suitability of using
specific lidar metrics in predicting biomass increment
(∆AGB) and models forms (Bollands̊as et al. 2013, Hu-
dak et al. 2012, Meyer et al. 2013, Næsset et al. 2013,
McRoberts et al. 2014).

The forests of interior Alaska are vast, covering ap-
proximately 56 million hectares (17% of the US forest
land). These forests are characterized by mostly low

productivity, inaccessibility, and extremes in both to-
pography and temperature, and are therefore very ex-
pensive to inventory and monitor effectively (van Hees
2005). These and other factors have contributed to the
lack of ground inventory data in interior Alaska. The
emergence of a new generation of advanced remote sens-
ing technologies, such as airborne lidar, which is capable
of directly measuring three-dimensional forest structure,
has the potential to decrease the number of field plots
required to inventory remote regions. The FIA program
of the USDA Forest Service Pacific Northwest Research
Station has initiated a research project to evaluate how
lidar can be used to augment a limited sample of FIA
ground plot data. Kenai Peninsula was selected for this
project as its vegetation and forest resource types are
similar to interior Alaska’s forest types which are dom-
inated by white spruce (Picea glauca (Moench) Voss),
black spruce (P. mariana (Mill.) B.S.P.), and paper
birch (Betula papyrifera Marsh) to those common in the
mountainous south-coastal regions (Sitka spruce [Picea
sitchensis (Bong.) Carr.] and mountain hemlock (Tsuga
mertensiana (Bong.) Carr.).

The relationship between biomass and lidar metrics
varies by stand (Naesset et al. 2004, Naesset and Gob-
akken 2005, Breidenbach et al 2007, Goerndt et al. 2010),
indicating the need for varying parameters among stands.
Mixed-model approaches formally incorporate the between-
stand variability of biomass-lidar metrics relationships
into the model. Estimation of biomass using nonlinear
mixed-effects models has been previously reported by
Breidenbach et al (2007, 2008), but no published work
has applied mixed effect model for estimating ∆AGB for
Alaskan forests.

The objectives of this study were to: 1) identify and
examine selected methods for estimating biomass incre-
ment using repeatedly measured lidar and ground data;
2) examine the performance of selected models for es-
timating biomass increment in Alaskan forests; and 3)
examine the potential use of mixed effect models to pre-
dict biomass increment.

2 Methods

2.1 Study Area The study was conducted on Ke-
nai Peninsula, Alaska (Figure 1). The western lowlands
of the Kenai cover approximately 775,000 hectares of
forestland. Data for this study were obtained from For-
est Inventory and Analysis (FIA) databases for coastal
Alaska forests. The FIA databases are part of the na-
tional inventory of forests for the United States (Roesch
and Reams 1999 and Czaplewski 1999). A tessellation
of hexagons, each approximately 2400 hectares in size, is
superimposed across the nation, one field plot randomly
located within each hexagon. Approximately the same

mailto://temesgen.hailemariam@oregonstate.edu
http://mcfns.com


Temesgen et al. (2015)/Math.Comput. For.Nat.-Res. Sci. Vol. 7, Issue 2, pp. 66–80/http://mcfns.com 68

number of plots is measured each year, and each plot
has the same probability of selection. Each field plot
is composed of four subplots, with each subplot com-
posed of three nested fixed-radius areas used to sample
trees of different sizes (Figure 2). Forested areas that
are distinguished by structure, management history, or
forest type, are identified as unique units on the plot and
correspond to stands of at least 0.4047 hectare in size.

This study is part of a larger project aimed at exam-
ining the potential use of lidar to inventory and mon-
itor coastal Alaska forests. Because one of the main
objectives of this preliminary study was to evaluate the
predictive performance of ∆AGB equations as a func-
tion of successive lidar measures, only ground plots that
showed increments were included. Accordingly, our 2004
and 2009 FIA data set for Kenai Peninsula contained 22
sample clusters (plots) and 54 subplots that covered a
wide array of stand densities and productivity gradients,
with basal area ranging from 2.2 to 46.5 m2/ha; number
of tree/ha from 60 to 1190; and elevation from 30.5 to
457.2 m (Table 1).

Table 1: Minimum (Min), average (Mean), maximum
(Max), and standard deviation (SD) of selected stand
attributes of the data used in the study.

Attribute Min Mean Max SD
Elevation (m) 30.5 151.8 457.2 10.0
Slope (%) 0.0 5.0 35.0 1.0
Site index (m) 27.0 60.4 85.0 13.3

The ground data used in this study were collected
during two measurement periods. Data from the first
(early) measurement period were collected between 1999
and 2004 when FIA was still organized as a periodic in-
ventory. Data for the subsequent measurement period
(late), from 2004 to 2009, were collected after the transi-
tion from periodic to annual inventories by FIA. The re-
measurement interval for these plots was not, however,
guaranteed to be 5 years. Some of the plots were re-
measured after a single year, and some of the plots were
re-measured after up to 10 years. For biomass incre-
ment, this required normalizing by the number of years
between re-measurements. We summarized ground at-
tributes at the sub-plot level from tree records in the
databases for the respective periodic and annual inven-
tories. Biomass increment (kg/ha) was calculated as
the change in biomass for trees measured during both
measurement periods. This means that changes due to
mortality and ingrowth were omitted. Due to lack of
long term data, no attempt was made to account for
structural changes which might affect to tree growth,

or mortality (Kenai Peninsula has experienced a beetle
epidemic).

Tree biomass was estimated using equations devel-
oped for a variety of tree species in Alaska (Yarie et al.
2007). The equations were applied to the trees measured
on each plot to obtain a plot-level estimate of above-
ground tree biomass. The following ground variables
were extracted.

- Y4 and Y9: biomass kg for measurement periods
ending in 2004 and 2009, respectively.

- ∆AGB: 5-year prediction biomass increment in kg/ha
for trees measured in both the early and late in-
ventories.

To obtain precise plot coordinates, survey-grade GPS
with differential post-processing was used to geo-reference
sub-plots (Andersen et al. 2009).

Lidar data
We used two leaf-off airborne laser scanning surveys

datasets acquired over the Kenai Peninsula in 2004 and
2009 for this study. Both datasets were collected us-
ing small-footprint, discrete-return lidar systems that
recorded a target density of 4 pulses /m2returns. The
data were processed to create subplot-level lidar-derived
products using Fusion 2.0 (McGaughey et al. 2004).
Over 20 lidar-derived variables were evaluated as poten-
tial predictors. We selected a number of lidar metrics
for examination of relationships to biomass increment
based on the strength of their relationship to biomass
and biomass increment. The selected predictor variables
include lidar canopy height (LCH), percent canopy cover
(PCVR), coefficient of variation of lidar canopy height
(LCHCV), and differences between successive percent
canopy cover values (∆PCVR).

- LCH604 and LCH609: the 60th percentile of all
returns lidar canopy height in 2004 and 2009, re-
spectively.

- LCH904 and LCH909: the 90th percentile of all
returns lidar canopy height in 2004 and 2009, re-
spectively.

- PCVR4 and PCVR9: Percent of all-returns lidar
heights above 1 meter for the 2004 and 2009 data.

- LCHCV4 and LCHCV9: Coefficient of variation
(%) of all-returns lidar data in 2004 and 2009.

- ∆LCH30, ∆LCH60, and ∆LCH90: Difference in
the 30th,60th, and 90th percentile of all-returns li-
dar heights between 2004 and 2009, respectively.
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Figure 1: The Kenai Peninsula study site.

- ∆PCVR: Differences in coefficients of variation for
all-returns lidar heights between 2004 and 2009.

For all base models, explanatory variables that did
not contribute significantly (at the 0.05 level) towards
explaining variation were dropped from models.

2.2 Data summary The values of AGB ranged from
1929.0 to 213,328.0 kg/ha and 1458.0 to 202,556.0 kg/ha
with coefficient of variation of 88.6 and 93.0% in 2004
and 2009, respectively. The values of ∆AGB ranged
from 115 to 23,227 kg/ha with coefficient of variation
96.1% (Table 2).

The data indicated that the spread of the ground and
lidar attributes have not significantly changed between
the two measurement periods. Over five year period,
∆AGB ranged from 115 to 23,227 kg/ha, while the dif-
ferences ∆LCH90 and ∆PCVR ranged from -1.63 to 1.88
and -0.19 to 25.3%, respectively (Table 2).

The lidar metrics were derived separately for each
subplot. The range and variability of the lidar metrics
was not remarkably different during the two measure-

ment periods. The 90th percentile lidar canopy height
ranged from 5.1 to 19.3 m in 2004, while in 2009 it ranged
from 5.0 and 19.0 m. Percent canopy cover ranged from
5.2 to 42.9% and from 10.5 to 64.1% in 2004 and 2009, re-
spectively. The coefficients of variation for the 60th and
90th percentile lidar canopy height were 42.6 and 32.3%
and 45.7 and 24.1% in 2004 and 2009, respectively. The
coefficients of variation for PCVR were 24.1% and 33.9%
in 2004 and 2009, respectively (Table 2).

2.3 Data Analysis The Pearson correlation coeffi-
cients were used to quantify the relationships between
∆AGB and selected lidar metrics. Graphical approaches
were also used to indicate relationships between ∆AGB
and selected lidar metrics in coastal Alaska forests. Fol-
lowing these exploratory analyses, we selected variables
that minimized the mean-square-error (MSE) and aver-
age deviation (bias) while keeping the model as simple as
possible (i.e., minimum number of predictors) to prevent
model over-fitting.

In this study, two sets of models were evaluated.
Each of the models in the first set has estimators for
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Table 2: Summary of selected attributes: minimum (Min), maximum (Max), and standard deviation (Std) (n= 54
subplots).

2009 2004
Attribute Min Mean Max Std Min Mean Max Std

Biomass(kg/ha) 1,929.0 69,857.0 213,328.0 60,507.5 1,458.0 63,625.0 202,556.0 59,162.0

Lidar canopy height (m)
30th percentile 2.3 5.4 12.5 2.4 2.0 5.5 12.2 2.6
60th percentile 3.3 8.2 16.1 3.5 3.0 8.3 15.6 3.8
90th percentile 5.1 11.8 19.3 4.2 5.0 11.5 19.0 4.3
Percent canopy cover 5.2 26.9 42.9 9.5 10.5 39.5 64.1 13.4

Difference
Biomass increment
(kg/ha)

115.0 6,232.0 23,227.0 5,986.1

Lidar canopy height (m)
30th percentile -0.8 0.1 1.9 0.5
60th percentile -1.3 0.1 2.9 0.7
90th percentile -1.6 -0.14 1.9 0.4
Percent canopy cover -0.2 13.4 25.9 6.6

biomass at two points in time; increment is estimated as
the difference. The second set of models (4 through 6)
is fit assuming a mixed-model error structure; only one
of these (model 4) also estimates biomass at both points
in time. For all models, explanatory variables that did

Figure 2: Forest Inventory and Analysis (FIA) plot de-
sign, illustrating a single plot, composed of four sub-
plots in a predetermined geometric arrangement. Each
subplot is composed of three fixed-radius areas used to
sample trees of different sizes. The two larger radii plots
(36.6 m and 17.95 m) are concentric, and the small ra-
dius plot (2.07 m) is not, (Figure not drawn to scale).

not contribute significantly (at the 0.05 level) towards
explaining variation were dropped from models.

2.4 Modeling Approach Models 1 through 3 are
nonlinear models with different lidar metrics and predic-
tion strategies, and assume the mean function is plot in-
variant with constant residual variance. Models 4 through
6 explicitly incorporate the clustered structure of the
sample through random coefficients.

Model 1: Using differences between the 2009 and
2004 lidar-derived biomass predictions

Biomass was regressed against selected lidar attributes
to predict its values based on lidar attributes acquired
in 2004 (Y4) and 2009 (Y9). ∆AGB was estimated as
the difference between the 2009 and 2004 predictions.

Y 4ij = eβ0+β1LCH904ij+β2PCV R4ij + εij (1)

Y 9ij = eβ0+β1LCH909ij+β2PCV R9ij + εij (2)

∆ÂGBij = Ŷ 9ij − Ŷ 4ij (3)

Where:

- n and m denote the number of plots and subplots
respectively;

- i refers to plot, i = 1, . . ., n; and j indicates sub-
plots; j = 1, . . .,mi;

- β0, β1; and β2 are parameters to be estimated;
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- ∆ÂGBij is 5-year prediction biomass increment;

- εij is an error term, assumed to be independent
between observations, such that εij ∼ N

(
0, σ2

ε

)
;

- LCH904, LCH909, PCVR4, and PCVR9 have been
defined earlier; and

- Ŷ 9ij and Ŷ 4ij biomass (kg) predictions in 2009
and in 2004.

Model 2: Estimating ∆AGB using differences in
lidar attributes

In this approach, differences between selected lidar
metrics were calculated by subtracting their 2009 values
from their 2004 values (e.g., LCH309 – LCH304). We es-
timated ∆AGB for each subplot using these differences.

∆ÂGBij = eβ0+β1∆LCH30ij+β2∆PCV Rij + εij (4)

Where:

- ∆ÂGBij∆LCH30 and ∆PCV R are the differences
in the 30th percentile lidar canopy height (m) and
percent canopy cover returns between the 2009 and
2004 lidar acquisitions;

- ∆ÂGBij is predicted 5-year prediction biomass in-
crement;

- and all other symbols are as previously defined.

Model 3: Using differences derived from succes-
sive lidar based biomass predictions In this ap-
proach, ∆AGB is estimated using successive lidar-based
biomass predictions that are adjusted with ordinary least
squares (OLS) correction (Draper and Smith 1998, p.
225).

∆ÂGBij = β0 + β1

(
Ŷ 9ij − Ŷ 4ij

)
+ εij (5)

Where:

- β is the vector of average model parameters;

- Ŷ 9ij and Ŷ 4ij are estimated biomass (kg) in 2009
and 2004 using Equations 1 and 2;

- and all other symbols are as previously defined.

Mixed model analysis Mixed model approaches can
formally incorporate the within-plot variability of biomass-
lidar metrics relationship into the model. Gregoire (1987)
asserted that plot random effects account for influences
due to site and related variables such as drainage and

productivity. Accordingly, we considered the hierarchi-
cal structure of the data under the base models (Models
1 through 3), and examined the roles of mixed effects
models (MEM) in estimating ∆AGB.

The nonlinear mixed model can be motivated as a hi-
erarchical model (Pinheiro and Bates 2000). Suppose we
observe biomass increment and coinciding lidar-derived
variables in subplot j (j=1. . . mi), nested within the i-
th plot, the MEM framework for estimating biomass in-
crement in the jth subplot nested within the i-th plot
(∆AGBij) can be formalized as (after Pinheiro and Bates.
2000 p. 58):

∆AGBij =Xijβ + Zijbi + εij (6)

Where:

- bi is a vector of plot-level random effects;

- Xij and Zij are fixed-effects and random-effects re-
gressor matrices;

- εij is the within plot error vector that is assumed
to be independent between plots and normally dis-
tributed;

- and other symbols are as previously defined.

After examining the between plot variability of ran-
dom coefficients introduced into the base equations, we
concluded that a plot-level random effect was necessary.
The nlme function (R Development Core Team 2011)
was used in this analysis and the enhanced equations
had the following general forms.

Model 4: Mixed models for differences between
the 2009 and 2004 lidar-derived biomass predic-
tions Equations (7) to (8) have the same fixed com-
ponents as Eq. (1) and (2) with plot-level random inter-
cepts. The ∆AGB of the j-th subplot from the i-th plot
is modeled as:

Y 4mij = e(β0+bi)+β1LCH904ij+β2PCV R4ij + εij (7)

Y 9mij = e(β0+bi)+β1LCH909ij+β2PCV R9ij + εij (8)

∆ÂGBij = Ŷ 9mij − Ŷ 4mij (9)

The fixed effects parts of the model are β1LCH904+
β2PCV R4 and β1LCH909+β2PCV R9 for Equations (7)
to (8), with random coefficients bi ∼ N

(
0, σ2

b

)
, εij ∼

N
(
0, σ2

ε

)
plot-level random effects, and σ2

ε is the plot-

level residual variance. Note that Ŷ 9mij and Ŷ 4mij are
biomass (kg) predictions in 2009 and in 2004.
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This model has the same number of fixed coefficients
as Equation (1). However, the variation in bi reflects the
variation between plots. The plot-level random effect bi
is assumed to be uncorrelated among plots.

Model 5: Mixed model using differences derived
from successive lidar metrics By modeling plot as
a random effect, we can explore plot-specific biomass
differences in the relationships between biomass incre-
ment and changes in lidar metrics. Suppose we observe
biomass increment and coinciding lidar metrics change
in subplot j (j = 1. . .4), nested within the i-th plot. yij
is observed biomass increment in the j-th subplot nested
within the i-th plot.

∆ÂGBij = eβ0+bi+β1∆LCH30ij+β2∆PCV Rij + εij (10)

Where:

- bi is plot-level random effects;

- bi ∼
(
0, σ2

b

)
;

- and σ2
ε is the within plot residual variance;

- and all other symbols are as previously defined.

Model 6: Mixed model on differences derived
from successive biomass predictions In this approach,
∆AGB is estimated using successive lidar-based biomass
predictions that are adjusted with ordinary least squares
(OLS) corrections (Draper and Smith 1998, p. 225) and
with a random intercept to account for site differences.

ÂGBij = bi + β1

(
Ŷ 9mij − Ŷ 4mij

)
+ εij (11)

Where all the symbols are as previously defined.
While Models 2 and 5 use differences in selected li-

dar metrics between two acquisitions to predict ∆AGB,
Models 1, 3, 4, and 6 adjust the differences between
the 2009 and 2004 biomass prediction to predict ∆AGB.
Lohr (1999, p. 77) refers to the latter approaches as dif-
ference estimation.

Nonlinear model parameters were estimated using
non-linear least squares procedure using the nls function
in R software (R Development Core Team 2011). Initial
approximations for each parameter were obtained from
linear transformation of the equations, where possible.
The starting value of each parameter was varied in order
to find a global minimum, and the run with the small-
est MSE was chosen as providing the final parameter
estimates. Residual plots for the base models showed
no obvious patterns. As a result, the three fixed-effect
nonlinear models were fit assuming a constant residual
variance. Mixed models were fit using the nlme function
in R (R Development Core Team 2011).

2.5 Model Comparison and Selection The data
show considerable variation in lidar-derived attributes
among subplots. To retain this variation and include
their influence in predicting ∆AGB the predictive per-
formance of the eight equations was evaluated by using
leave-one-out cross-validation, where one subplot was
excluded from the data and its value was predicted from
the remaining n-1 observations using the six prediction
strategies. This procedure was repeated for all subplots
to calculate the mean difference between predicted and
observed values (often called bias) and the root mean
squared error (square root of the mean squared differ-
ence; RMSE; Rawlings et al. 1998, p. 444). Both RMSE
and bias were expressed as percent of the observed mean
∆AGB.

Bias

Bias% =

n∑
i=1

mi∑
j=1

(
∆AGBij − ∆ÂGBij

)
n× ∆AGB

× 100

Where:

- ∆AGB is mean five year biomass increment; and

- AGBij and ÂGBij are observed and predicted five
year biomass increments of jth subplot in the ith
plot (cluster);

- and all other symbols are as previously defined.

Relative Root Mean Square Error (RRMSE)

RRMSE% =

√
n∑
i=1

mi∑
j=1

(
∆AGBij − ∆ÂGBij

)2

n2 ×AGB
× 100

Where all symbols are as previously defined. All sta-
tistical analyses were performed in R (R Development
Core Team 2011).

3 Results and Discussion

The 2004 and 2009 lidar metrics were strongly cor-
related with AGB estimated for each year (Table 3).
This is consistent with the findings of many other stud-
ies (Nilsson, 1996; Næsset, 2002; Næsset, and Bjerknes,
2001; Næsset and Økland, 2002; Popescu et al, 2002;
Naesset et al. 2005, Breidenbach et al 2007, Goerndt et
al. 2010), which found strong and positive relationships
between lidar and ground-based biomass predictions.

Correlations between ∆AGB and lidar canopy met-
rics ranged from 0.51 to 0.56, while correlations between
the ∆AGB and ∆LCH and ∆PCVR ranged from 0.31
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to 0.39 (Table 3). ∆AGB was negatively correlated with
LCHCV4 and LCHCV9, but positively correlated with
other lidar metrics considered in this study. Of the lidar
metrics, LCH604 and LCH609 had the highest corre-
lations with ∆AGB (Table 3). The strengths of these
correlations provide some insight into the relationship
between lidar attributes and ∆AGB.

Figures 3a and 3b depict a nonlinear relationship
between AGB and selected lidar metrics in 2004 and
2009. Plots of ∆AGB and differences in lidar metrics
(i.e., ∆LCH and ∆PCVR) also showed nonlinear rela-
tionships (Figures 4a and 4b). The differences in succes-
sive lidar metrics were significant covariates in estimat-
ing ∆AGB. There were no correlations sufficiently high
among covariates to cause problems with collinearity.

3.1 Comparison of Strategies Substantial differences
were found among the predictive abilities of the six mod-
els examined for predicting ∆AGB (Table 4). Biases for
the base models ranged from -1.73 to 2.6%, while for
the expanded model bias ranged from -10.4 to 2.97%.
The biases of the base models were negligible, while the
biases of the enhanced models were high. The higher
bias might be attributed to the small sample size that
represent a highly varying lidar and ground data that
spanned a wide range of elevation (30.4 to 457.2 m),
and the use of nonlinear mixed effect model, which are
known to be biased without sample calibration data in
the leave-one-out validation process (Monelon 2003 and
Temesgen et al 2008).

In terms of RRMSE, substantial differences were found
among the predictive abilities of the six models exam-
ined for estimating ∆AGB. RRMSE for the base mod-
els ranged from 95.9 to 196%, while for the enhanced
model RRMSE ranged from 76.9 to 136%. Low preci-
sion (high RRMSE %) for Models 1, 3, 4, and 6 might
be attributed to the difference estimation method these
models employed. Lohr (1999, p. 77) asserts that differ-
ence estimation works best if the over and under predic-
tions are equally divided and if the sample size is large so
that the sampling distribution of the differences would
be approximately normal.

In this study, we have found that biomass increment
estimation is not as straightforward as it is for biomass
yield estimation (Figure 3 vs. Figures 4 and 5). For
example, if the average value of ∆AGB is used as pre-
dicted value for all plots (no model), the RRMSE would
be 110%, which appears a better option than Models
1 and 4. We attribute the relatively poor performance
of the ∆AGB models to two factors. First, measure-
ment error resulted because of a time lag of up to five
years between ground data and lidar acquisition. Pa-
rameters are estimated in a MEM framework using re-
peated ground and lidar data with a time lag between
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Figure 3: Relationship between above ground biomass (Y4 and Y9), lidar canopy height (LCH) and coefficient of
variation (LCHCV) in 2004 (a) and 2009 (b). Note: line indicates locally weighted smoothing line (loess smoother).
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Figure 4: Relationship between biomass increment (Delta AGB) and lidar canopy height (LCH) and coefficient of
variation (LCHCV) in 2004 (a) and 2009 (b). Note: line indicates locally weighted smoothing line (loess smoother).
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Table 4: Average bias and relative ∆AGB root mean square error (RRMSE) by fitting strategies.

Model Bias
(%)

Relative
RRMSE (%)

Model 1: Using differences between the 2009 and 2004 lidar-derived biomass predictions 2.60 196.0
Model 2: Estimating BI using differences in lidar attributes 1.01 95.9
Model 3: Using differences derived from successive lidar based biomass predictions -1.73 104.0
Model 4: Mixed models: differences between 2009 & 2004 lidar-based biomass predictions 2.97 136.0
Model 5: Mixed model using differences derived from successive lidar metrics -10.40 76.9
Model 6: Mixed model on differences derived from successive biomass predictions -3.80 89.6

and ground measurement and lidar acquisition. This
difference can cause problems when trying to estimate
covariances of the random error because the covariance
structure that is appropriate for the first measurement
may not be appropriate for the second set of measure-
ment. Second, differences in species composition, distur-
bance regimes, and other site-related characteristics are
not included in the models while they contribute to the
high variation of ∆AGB (96.1 % coefficient of variation).

Improvement in prediction was obtained by using
ordinary least square correction factor (i.e., comparing
Model 3 with 104% RRMSE to Model 1 with 196%
RRMSE and Model 4 with 136% RRMSE to Model 6
with 89.6% RRMSE). Results show that for Model 2,
the cross validation RRMSE of the base model form was
95.9% (Table 4). The enhanced Model 5, which included
the plot-level random effect, decreased the RRMSE to
76.9%. However, the bias was large (-10.4%) for this
model.

Model 5 reduced the predicted root mean square er-
ror by 60.8% compared to predictions from the widely
used approach, and was selected for future use. The
differences in successive lidar-derived canopy attributes
can also be used as proxy for estimating ∆AGB under
both Model 2 and 5. Canopy structure mimicked via
lidar-derived canopy height and density metrics reflect
the integrated influence of age, species, disturbance, and
site productivity, and is therefore an important and pow-
erful unifying variable.

3.2 Mixed effect analysis Results suggest that there
is sizable gain by including plot-level random effect to
the base biomass yield and increment equations. Ac-
cording to the fit statistics, all of the mixed effects mod-
els were superior to the without the plot effects (Ta-
ble 4). Compared to the base models, the mixed-effects
models had more precise predictions (lower RMSE), but
higher bias. Under the mixed model analysis, the al-
ternative models reduced RMSE by an average of 19.8
% for plots with field measured biomass observations.
One explanation for the improvement in precision of the

enhanced models over the base is that the base mod-
els ignore the clustered structure of the data, assuming
all subplots are independent, while the enhanced mod-
els acknowledge this structure of the data which allows
greater flexibility to describe the variance and covari-
ance structure and account for the within and between
plot ∆AGB-lidar metrics variation.

Both the mixed-effect model and model without the
random effects were compared. When only the fixed
component of Model 5 was used the RRMSE was 95.2%.
When the MEM used the predicted plot-level random
effect, the RRMSE decreased to 76.9%. The mixed-
effects model more closely followed the actual values for
most plots and indicated that mixed effects model de-
scribed the ∆AGB-lidar metrics relationship well (Fig-
ure 5). This result seems to suggest that incorporating
a random effect is a very effective way to consider stand
effects. Many of the variables that could influence the
∆AGB-lidar metrics relationship may not be known or
may not be practical to measure.

The size of biomass increment was related to subplot-
level lidar-derived variables, but varied widely. How-
ever, it is unlikely that the relationships of ∆AGB and
the lidar covariates have a constant relationship over
the study area. Motivated by the hierarchical structure
of the data, we addressed the plot-level variation with
a random coefficient model. Under the mixed model
analysis, residual plots indicated a constant relationship
across lidar canopy height and percent canopy cover re-
turn gradients.

Mixed effect models are effective statistical tools, but
it should also be recognized that their effective applica-
tion requires some sample growth data. As such, the
need for sample data limits their applications. If a sub-
sample of ground data is available to predict the plot
random intercept, the enhanced model is suggested. In
the absence of ground data, the plot-level random ef-
fect is usually set to zero and the model without the
plot effects is used. Using a mixed-effects model in this
case can result in a substantial decrease in predictive
performance, but the bias will increase (Monelon 2003
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Figure 5: Relationship between biomass increment (Delta AGB) and differences in selected lidar metrics. Note: line
indicates locally weighted smoothing line (loess smoother).

and Temesgen et al 2008). In which case, we would not
recommend the use of mixed effect model when a sub-
sample of ∆AGB is not available. Instead, Model 2 with
only the fixed effect parameter is suggested (Table 5).

3.3 Final Parameter Estimates Among the base
models forms, Model 2 had the lowest cross-validation
RMSE. It reduced the predicted RRMSE by 51.2% com-
pared to Model 1. The enhanced counter model (Model
5) which included random intercept resulted in a de-
crease of RMSE by 19.8% while its bias increased. Table
5 shows the estimated parameters and associated stan-
dard errors for Models 2 and 5.

Residual plots for both models showed no obvious
patterns. Based on the residual plots above, it appears
that there is not a problematic level of variance hetero-
geneity. Also, residuals do not show any clear pattern
with the lidar-derived variables included in the model,
indicating the assumption of independent error is justi-
fied.

Scatter plots of residuals were constructed for the
fixed parts and the random part of Model 5 (Figure
6). The scatter plots of the mixed-effects model showed

more homogeneous residual variance over the full range
of the predicted values and no systematic pattern in the
variation of the residuals. It indicates that the fixed-
effect models improve the model performance compared
to the model without the random effects.

4 Concluding Remarks

Regression-based methods for predicting forest in-
ventory variables using lidar-derived canopy height and
density metrics have been well described and demon-
strated in the research literature (Næsset et al. 2005,
Goerndt et al. 2010). Less well developed, however, are
reliable techniques for estimating ∆AGB. In this study,
we have shown that biomass increment estimation is not
as straightforward as it is for biomass yield estimation
(Figure 3 vs. Figures 4 and 5).

There was a strong relationship between total esti-
mated biomass and lidar metrics for both measurement
periods. Our results are consistent with previous stud-
ies, which found that ∆AGB values are extremely vari-
able within an eco-region, and a portion of this vari-
ability can be explained by the location of plots over the
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Table 5: Estimated parameters and associated standard errors for model the selected to estimate biomass increment.

Model 2 Model 5
Coefficient Estimate Standard Error Coefficient Estimate Standard Error
β0 8.0242 0.3745 β0 7.79 0.344
β1 0.0441 0.1597 β1 0.14 0.171
β2 0.0478 0.0214 β2 0.07 0.02

σe 3426
σb 0.63

Figure 6: Scatter plot of residuals versus fitted values
using the fixed parts (a) and random part (b) of the
mixed effect of Model 5.

land base. Developing models that relate ∆AGB to lidar
metrics is an important step forward for forest monitor-
ing and biomass assessment. Recognizing this fact, this
analysis represents one of the first attempts to develop
∆AGB equations for coastal Alaska forests and relate
∆AGB to selected lidar metrics.

Despite lack of a definitive relationship between ∆AGB
and successive lidar metrics, the results of this study in-
dicate that repeated lidar measurements can be used to
estimate ∆AGB and monitor change over time. Yet,
additional research is warranted to improve our under-
standing of the relationships between the distribution
of lidar measurements and ∆AGB in Coastal Alaska
forests.

The following recommendations may improve biomass
increment model fit and performance for future lidar sur-
veys: (1) ground-reference samples and remotely sensed
data should be ideally collected in the same year and

preferably during the same part of the growing season
to eliminate discrepancies induced by growth, mortal-
ity, disturbance, or phenology; and (2) maximize the
number of ground-samples collected and improve model
specification by including climate and site explanatory
variables and by exploring other modeling strategies that
account for complex interactions among predictors; and
(3) use large plot footprint sizes to minimize spatial co-
registration error between lidar and field measurements
or use systems that allow precise positioning.

Moreover, if biomass increment were studied over a
longer temporal scale the amount of biomass increment
might exceed the errors associated with its estimation,
thereby allowing it to be successfully and more accu-
rately detected by the lidar. Future biomass increment
studies would benefit enormously from further investiga-
tion into the quantitative effects of different spatial and
temporal resolutions.
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