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DYNAMIC MODELLING OF TREE FORM

OscAR GARCIA
Dasometrics, Vina del Mar, Chile

ABSTRACT. Tree profile or taper models are an important component of decision support systems for forest
management. An extensive body of theory and observations on the mechanisms of tree form development
has accumulated over the last 150 years. Quantitative mensurational models, however, have made little
use of that information. Taper models remain largely empirical and static, describing tree dimensions
and shape at one point in time. Here taper equations are derived from simplified models of radial stem
growth consistent with physiological knowledge. It is expected that this approach may improve accuracy,
especially when stands are subjected to varied density management alternatives.
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1 INTRODUCTION

Tree taper or profile models are an important compo-
nent of decision support systems for forest management
(Husch et al. 2003, Laar and Aka 2007, Burkhart and
Tomé 2012). Consisting of equations relating stem di-
ameter or cross-sectional area to height above ground,
they have a number of uses, notably the disaggregation
of stand and tree measurements or predictions into yields
by product types and dimensions. Emphasis lies on ac-
curacy, flexibility, and simplicity. Generally the models
are empirical, based on large data sets, and static, de-
scribing tree form at a single point in time.

At a more fundamental level, mechanisms of tree form
development have been studied for a long time (Gray
1956, Larson 1963). Two general theories, with varia-
tions and elaborations, are the most popular. Metzger
in 1893 sustained that tree shape optimizes resistance
to bending by the wind. In its simplest form the theory
predicts a cubic paraboloid for the form of the branch-
free part of the bole. For elaborations on these principles
see, for instance, Gaffrey and Sloboda (2001). The other
main view, introduced by Pressler in 1864, assumes that
the increment in cross-section at a certain height up the
stem is proportional to the amount of foliage above that
height. The basic idea can be traced back to Leonardo
da Vinci (Mendes France 1981, Aratsu 1998, Sone et al.
2009, Eloy 2011). The main bole would approach a
quadratic paraboloid. Pressler’s ideas were re-developed
by Japanese scientists in the 1960’s, and under the name
of the pipe model theory have received much attention
from plant physiologists. Examples of models derived

from such principles can be seen in Chiba (1990), Ren-
nolls (1994), Houllier et al. (1995), Deleuze and Houl-
lier (2002), Mékeld (2002), Valentine et al. (2012). The
co-existence of the theories of Metzger and of Pressler,
despite of predicting different diameter-length relation-
ships, points to a large natural variability that makes
difficult to reach definite conclusions about fundamen-
tal mechanisms. The theories address mainly shape on
the branch-free bole above the basal swelling; stem form
within the crown is less-often defined precisely, and the
butt swell is largely ignored.

We link both research streams, developing taper mod-
els suitable for practical management use that are con-
sistent with mechanistic models of stem development.
The aim is to obtain tractable dynamic models for the
whole stem, with a realistic representation of the evolu-
tion of both within-crown and basal bole shapes. Sim-
plifications of a general model are introduced to obtain
explicit mathematical solutions.

2 MODELS

2.1 Stem form development. Trees produce a layer
of wood each year, and these layers accumulate on
top of each other to determine the stem form at any
given time. First, we model how the annual layer
thickness varies with distance from the tree top. Ac-
cording to Pressler, thickness measured as growth-ring
cross-sectional area As (or volume increment per unit
length) increases monotonically with distance x down
to the base of the green crown, below which it re-
mains constant. A commonly-used approximation as-
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sumes that As increases linearly with x within the
crown, so that the annual area increment has the form
of a piece-wise linear ramp with a horizontal maximum
(e. g., Mitchell 1975). Our model admits more general
“rounded ramps”, and includes also a basal swelling that
depends on distance from the ground.

A second assumption is that, ignoring butt swell, the
relative growth pattern remains the same over time, just
moving upwards as the tree grows in height. That is, the
As wvs. x functions for different layers are proportional.
Under Pressler’s model this is not exactly true if crown
length changes, but the assumption is necessary for ob-
taining closed-form solutions, and as discussed later, it
may be expected to produce acceptable results.

Mitchell (1975) describes well this model and its con-
sequences, for a linear ramp and no butt swell, and his
Figure 4 is particularly instructive. The increment func-
tion translational invariance is behind the stability of the
classic Type 3 growth ring sequences of Duff and Nolan
(1953). They measured growth rings at the center of
each internode, mostly within crowns. The equations
below can be seen as continuous analogs of the Duff and
Nolan (1953) sequences, extended to full tree lengths and
simplified by using areas instead of radial increments.

Fig. 1 shows periodic area increments for Douglas-fir
stem-analysis data from British Columbia. These corre-
spond to the thickness of 5 consecutive growth layers, a
number chosen because of the low growth rates in these
stands and to reduce measurement error noise. The ob-
servations suggest a more gradual growth rate change
than the one predicted by the piece-wise linear Pressler
ramp function. The higher growth rates near the ground
that cause butt swelling are clearly seen. Similar pat-
terns have been observed for other species.

Typical section area profiles are shown in Fig. 2.
These are generated by accumulation of the growth rates
in Fig. 1. Variability is much higher in Fig. 1 than in
Fig. 2, reflecting the fact that noise tends to be amplified
by differentiation and reduced by integration. Therefore,
from a practical point of view, accuracy in modelling
growth rates may not be overly critical for predicting
tree profiles or volumes.

2.2 Mathematical formulation. Let s be the stem
cross-sectional area at a height h above ground when the
total tree height is H. This is a function s = s(h, H).
In Pressler’s model the increment of s is proportional
to the length of green crown above h. Then, expressing
increments relative to height growth, the growth rate at
a fixed h is
Js

5fH0<s0(w)=w(H—h)7

where z = H — h is distance from the top, and ¢(x) =
min{z/c,1} for a green crown length c¢. This ¢ is a
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Figure 1: 5-year cross-sectional area increments for Douglas-
fir trees as functions of height up the stem. Each curve cor-
responds to 5 contiguous growth layers selected at random
from each of 222 trees. Area increases with distance from the
top until becoming roughly constant below the crown base,
increasing again near the ground.
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Figure 2: Douglas-fir cross-section area profiles. One profile
selected at random from each of 222 trees.
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piece-wise linear ramp, directly proportional to z for xz <
¢ and equal to 1 for z > ¢. As indicated before, we
shall consider more general forms of ¢, but to simplify
will neglect any changes of ¢ and of the proportionality
factor over time. Specifically, it is assumed that o(z)
is a non-decreasing function of x with ¢(0) = 0 and
p(00) = 1. In addition, we include an additional butt-
swell increment component that depends on the distance
from the ground:

s
O bol(H — b+ n(n). 1)
The asymptote parameter by may vary from tree to tree.
Observed tree growth rate functions ds/9H are illus-
trated in Fig. 1. Near the tree top the increment is
dominated by ¢, while near the base the butt swell rep-
resented by 77 becomes important.
To obtain the profile function s(h, H) we integrate
over H for a fixed h. Growth starts when H reaches the
level h, so integrating from H = h to H = H,

H

s(h, H) =by / lp(H — h) + ()] dH

H—h
b /O o(x) da + (H — hyn(h))] .

Or, writing [ ¢(z) dz = ®(y),
s(h, H) = bo[®(H — h) + (H — h)n(h)] . (2)

Knowing the under-bark dbh, and therefore the cross-
section S at h = 1.3m, the tree-specific by can be elimi-
nated:

O(H — h) + (H — h)n(h) @)
O(H —1.3)+ (H — 1.3)5(1.3)

s(h, H,S) = S

Typical profiles corresponding to eq. (2) are shown in
Figure 2. ®(x) increases rapidly near the tree top, later
approximating a straight line as ¢ reaches or approaches
an asymptote. Closer to the base there is again a cur-
vature due to the butt swell.

2.3 Modelling ¢. Pressler’s model is
o(x) =min{z/by,1} = 1 — max{l — 2/by,0}
=1-(0-z/b)y,

where by is a parameter related to crown length. Fig. 1,
however, suggest something closer to an exponential

p(x) =1 —exp(—z/by),
or even a shallower hyperbolic

T 1

= =1-—

This might be sufficient, but for greater flexibility we
shall use a more general model characterized by a vari-
able shape parameter by. Ideally, we want a model of
the right shape that could be integrated analytically to
obtain a closed form expression for ®. A suitable choice
is

plx) =1 = 0y, (x/b1) , (4)
where
0o(u) = (1= Bu)y” (5)

with 0 # 0. Here Jp is called a “decay function”, and
1 —dg is a ramp. For the special case § = 0 we define
as the limit

So(w) = lim(1 - 6w)}/’ = exp(~u) . (6)

which gives the exponential model above!. Other special
cases include Pressler’s, with § = 1, and the hyperbolic

0 = —1. Fig. 3 shows some examples.
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Figure 3: Examples of decay functions dg, eq. (5)—(6).

Integrating, ® in eq. (2)—(3) is found to be

O(z) =2 — 527 |1 = Gy (prr) (B2 2) (7)
for by # —1. If by = —1 then ®(z) = = — by In(x /by + 1).
2.4 Butt swell. The additional butt-swell increment

in eq. (1) decreases with distance from the base, and can
be modelled by a suitably scaled decay function:

n(h) = b3dps (h/ba) . (8)

L 8y is the inverse of a Box-Cox transformation, used to define
a family of growth or probability distribution functions by Garcia
(2008). Eq. (4) corresponds to the functions with no inflection
point obtained by fixing one of the shape parameters at 1.
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2.5 Exponential model. The final profile model in

terms of cross-section area is defined by equations (3),

(7), (5) and (8). The case by = b5 = 0 may be of interest
as a simpler and parsimonious 3-parameter model:

s(h, H)

hyH,S)=58——=- 9

s(h H.8) = 5 53 ©

s(h,H) xH — h — by 4+ by exp|—(H — h)/b1]

4 by (H — h) exp(—h/by) .

The modified Brink function of Gadow and Hui (1999)
and Hussein et al. (2008) is a similar but not identical
combination of exponentials, with a different motivation,
that has been successful in a number of applications.

Both this and the general model can be integrated
to obtain an explicit expression for the volume between
any two height levels h; and hy. However, inverting to
obtain the height for a given diameter must be done
numerically.

(10)

3 EXAMPLE

Models were fitted to full stem-analysis Douglas-fir
data collected in the University of British Columbia re-
search forests, kindly provided by Prof. Valerie LeMay.
The ring measurement data were structured into growth
layers, describing a tree profile at a point in time. Layer
tips were interpolated with Carmean’s method (Dyer
and Bailey 1987).

For each tree with breast-height measurements, one
layer was chosen at random among those with complete
data and taller than breast height. This gave 222 pro-
files, with a total of 2028 measurements (Fig. 2). Equa-
tion (3) was fitted to the observed cross-section areas by
nonlinear least-squares. R code is shown the Appendix.
Model versions with and without free shape parameters
by and bs were tried. Table 1 shows the parameter esti-
mates.

The tree-top shape parameter by was not significantly
different from 0, and contributed little to a better fit.
The opposite was true for the but-swell shape parameter
bs. Therefore, the version with an exponential decay
function for the top and a general or hyperbolic (b5 ~
—1) decay function for the butt swell seems appropriate
in this instance.

The exponential-hyperbolic model is

4mm$=s$3@) (11)
s(h, H) «xH — h — 2.569{1 — exp[—(H — h)
1.042(H — h) (12)

Figures 4 and 5 show the annual growth layers generated
by this model for one sample tree. Annual increments

are consistent with the expected tree form development
over time. The linear area-length relationship observed
over much of the stem in Fig. 4, and also in Fig. 2,
corresponds to the taper line extensively documented
by Gray (1956) and others.

4000

3000
!

Area (cm?)
2000

1000

Height (m)

Figure 4: Model cross-sectional areas of annual growth ring
layers for one tree.

A simple nonlinear least-squares procedure was used
here. A detailed discussion of estimation methods for
taper equations is outside the scope of this article, but
a few comments may be appropriate. E. g., instead of
cross-sectional areas as dependent variables one could
use diameters, which would give a different weighting
to the data points. Similarly, it is often advocated to
give lower weighting to the larger values, to account for
the heterocedasticity generated by accumulated errors.
On the other hand, the larger diameters or areas are
usually the most important in the applications, and an
analysis using loss functions would suggest an opposite
weighting.

Another estimation issue is the autocorrelation of con-
secutive measurements in a same tree, and as in the
analysis of growth curves, more complex error struc-
tures have been introduced to deal with this (e.g.,
Gregoire and Schabenberger 1996, Williams and Reich
1997). Note however that with m measurements in
each of n individuals, the number of potentially cor-
related pairs of measurements is nm(m — 1)/2 out of
a total of nm(nm — 1)/2 pairs. That is, a proportion
(m —1)/(mn — 1) = 1/n, usually a fraction of 1%, so
that it seems rather unlikely that modelling those cor-
relations could make much difference. The same is true
in many longitudinal data studies.


mailto://garcia@dasometrics.net
http://mcfns.com

Garcia (2015)/Math. Comput. For. Nat.-Res. Sci. Vol. 7, Issue 1, pp. 9—15/http://mcfns.com

13

Table 1: Taper function parameter estimates.

Model b1 b2 bg b4 b5 RSE
Exponential  2.977 0 (fixed) 0.6114  0.9206 0 (fixed) 73.64
ba #0 4.599 0.6305 (p=0.3) 0.6155 0.9263 0 (fixed) 73.58
bs # 0 2.522 0 (fixed) 1170 023908  -1.133 (p=10"7)  72.83
Full 5.068 1.062 (p=0.4) 1202 02282 -1.162 (p=7-10"%) 72.74
Exp-Hyp 2.569 0 (fixed) 1.042  0.3012 -1 (fixed) 72.82
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Figure 5: Model diameters of annual growth ring layers for
one tree.

Potentially more important are form differences be-
tween stands. The form of a suppressed tree can be
expected to differ from that of a dominant tree of the
same size in a younger stand. This could be handled
by introducing stand-level covariates (Muhairwe et al.
1994), or by hierarchical modelling, at the cost of loos-
ing some of the simplicity appeal of taper equations. The
present model could aid in such investigations through
easily interpretable parameters: b; is related to crown
length and dominance, while the more pronounced butt
swelling that has been associated to dominant trees is
described by b3 and/or by.

4  CONCLUSIONS

A class of tractable dynamic taper models was de-
rived on the basis of widely accepted biological princi-
ples. They produce stem profiles that evolve in a con-
sistent way over time, a property that can be important
for some applications.

Conceptually, the assumption of a stable crown length

is not entirely satisfactory, although it seems unlikely
that the effects on integrated profile shapes might be
practically important. It would be interesting to see
if the assumption could be relaxed while still having a
closed-form solution.

As conventional taper equations, the models parsi-
mony and realistic representation of stem shape can be
an advantage. Preliminary comparisons to other models,
not reported here, have been encouraging, but further
testing is needed.
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APPENDIX: R COMPUTER CODE
Example of model fit:

summary (fitexp <- nls(sarea ~ profile(sheight,
treeHt, treeSarea, b=c(bl, 0, b3, b4, 0)),
data=profs, start=list(bl=5, b3=1, b4=2)))
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The following functions are used: b[1], b[2] / (b[2] + 1))) / (b[2] + 1)
profile <- function(h, H, S, b) { ’
# Taper model giving area at level h eta <- function(x, b) {
S * proffree(h, H, b) / proffree(1.3, H, b) # eta function (butt swell)
} b[3] * delta(x / b[4], b[5])
}

proffree <- function(h, H, b) {

# Free profile, gives area at level h for b0=1 delta <- function(x, theta=0) {

Phi(H - h, b) + (H - h) * eta(h, b) # Decay function
} if (theta == 0)
exp(-x)
Phi <- function(x, b) { else
# Phi function, integral of phi (top taper) pmax(l - theta * x, 0)~(1 / theta)

x - b[1] * (1 - delta((b[2] + 1) * x / }
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