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Abstract. Non-parametric k nearest neighbours (k-nn) techniques are increasingly used in forestry
problems, especially in remote sensing. Parametric regression analysis has the advantage of well-known
statistical theory behind it, whereas the statistical properties of k-nn are less studied. In this study, we
compared the relative performance of k-nn and linear regression in an experiment. We examined the
effect of three different properties of the data and problem: 1) the effect of increasing non-linearity of the
modelling task, 2) the effect of the assumptions concerning the population and 3) the effect of balance of
the sample data. In order to be able to determine the effect of these three aspects, we used simulated data
and simple modelling problems. K-nn and linear regression gave fairly similar results with respect to the
average RMSEs. In both cases, balanced modelling dataset gave better results than unbalanced dataset.
When the results were examined within diameter classes, the k-nn results were less biased than regression
model results, especially with extreme values of diameter. The differences increased with increasing
non-linearity of the model and increasing unbalance of the data. The difference between the methods was
more obvious when the assumed model form was not exactly correct.
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1 Introduction

Models are needed for almost all forest inventory and
planning calculation tasks. For instance, in most cases
not all variables of interest are measured for all trees.
Typically, some easily measured tree and stand charac-
teristics x are measured on all sample trees (later called
tally trees). Characteristics y, whose measurement can
be very time-consuming and expensive, are measured
only in a smaller sample of trees (later called height
sample trees). Models are then used to predict these
variables y for tally trees as a function of the variables x
measured for all trees. Besides, the common problem of
missing data in forest inventory and planning databases
necessitates the use of statistical methods as imputation
methods (Eskelson et al.2̃009). Furthermore, a need to
forecast the growth and yield in forest management plan-
ning is one important reason for the use of statistical
methods.

In recent decades, alternatives to traditional regres-
sion models, namely non-parametric methods (Fan,
2000), have been increasingly used. The increased use

of non-parametric methods is based on their flexibility
compared to corresponding parametric methods (Gib-
bons and Chakraborti 1992, Fan 2000). For instance,
the non-parametric methods may describe a wider range
of non-linear model forms with a large number of possi-
ble independent variables. They do not require complete
knowledge about the model form, and they are based on
fewer assumptions. Another justification for the use of
many non-parametric methods is their simple applica-
tion. However, parametric methods are well known and
have a solid statistical theory behind them, for instance,
with analytical estimates for model accuracy.

One widely used non-parametric method is the k-
nearest neighbour (k-nn) method. In k-nn, the depen-
dent variable is predicted as a weighted mean of k near-
est observations in a database, where the nearness is
defined in terms of similarity with respect to the in-
dependent variables of the model. There are a lot of
different options available, concerning the selected dis-
tance measure, the weighting scheme and the number of
neighbours.

With k-nn it is easier to reproduce non-linear depen-
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dencies than with parametric methods. On the other
hand, obtaining reliable predictions may require a larger
dataset with k-nn than with parametric models, as good
performance of k-nn requires that all x-values of target
units have close neighbours (Magnussen et al.2̃010). In
addition, the k-nn method is inevitably biased, as no pre-
diction can be larger (smaller) than the weighted mean
of largest (smallest) k values of y in the dataset (Mag-
nussen et al.2̃010). It means that the extreme values of
y are biased towards the mean. The parametric mod-
els are not expected to have this sort of bias within the
used data range, but obviously, the predictions can be
highly biased in a case of extrapolation. Non-parametric
methods retain more of the original (co)variation than
parametric models (Moeur and Stage 1995, Kangas and
Korhonen 1996, McRoberts et al.2̃002), although the full
(co)variation is only preserved with k=1 (Moeur and
Stage 1995, McRoberts 2009).

When a random sample is taken from the population,
it is often unbalanced. It means that the data is sparse in
certain areas, e.g. with a small number of observations
having small and/or high values of independent variables
(see Vieilledent et al.2̃009). This is adequate for most
purposes, but for modelling purposes a balanced sam-
ple with an equal number of observations from different
parts of data may be more advantageous. Such a sample
can be obtained, e.g. with stratified sampling.

There are few studies, in which parametric and non-
parametric methods are compared in forest modelling.
Vieilledent et al.(̃2009) demonstrated semi-parametric
mortality model’s capacity to produce unbiased esti-
mates for extreme diameters when compared to para-
metric mortality models. Metcalf et al.(̃2009) pre-
sented nonparametric Bayesian method for modelling
increased mortality of large trees even when data are
sparse. The method was compared with the paramet-
ric model to place the new estimates within the con-
text of previous work on tree mortality. Dobbertin
and Biging (1997) used non-parametric classifier CART
to model forest tree mortality. In the study CART
was also compared with parametric logistic regression.
Fehrmann et al.(̃2008) compared linear regression mod-
els and k-nearest neighbour approach for estimation of
single-tree biomass. Temesgen (2003) examined parame-
ter prediction and most similar neighbour approaches to
estimate stand tables from aerial information. There are
also some studies besides Metcalf et al.(̃2009), in which
the influence of sparse data is evaluated (e.g. Vieille-
dent et al.2̃009, Maltamo et al.2̃009).

The studied non-parametric and semi-parametric
models have been working well compared to the para-
metric methods. Each of these studies is a case study,
however, and it is not evident whether the differences
between the modelling methods are due to the specific

problem or due to the properties of the dataset, or if
they are due to the modelling method. The purpose of
this study is to analyze the relative performance of k-nn
and linear regression in different conditions. We exam-
ined the effect of three different properties of the data
and problem: 1) the effect of increasing non-linearity of
the modelling task, 2) the effect of the assumptions con-
cerning the population and 3) the effect of balance of
the sample data.

2 Problem Formulation

In order to analyse the effect of increasing non-
linearity of the modelling task, we compared k-nn
method and linear regression in three modelling prob-
lems: mean height (stand level data, Norway spruce),
height (tree level data, Scots pine) and mortality (tree
level data, Scots pine) models. The basic data used for
each task was NFI data, to ensure realistic populations
(Figure 1). In all modelling cases, we had just one in-
dependent variable, the stand mean diameter (DgM ) in
stand level models or the tree diameter (dbh) in tree
level models. While more complex models are more com-
mon in practise, including several independent variables
would have made the experiment more complicated. We
also assumed that in a simple experiment the potential
differences between the tested methods could be seen
more clearly.

In order to analyse the effect of different assumptions
concerning the population, we created two artificial pop-
ulations for each of the modelling tasks by simulation.
This was carried out by simulating the data sets with two
different methods, namely a parametric regression model
and a k-nn model, with slightly different assumptions
(Figure 1). The same methods were later tested in both
populations at the modelling stage. This made it possi-
ble to examine the effect of the correctness of the used
assumptions on the modelling. Finally, we tested the ef-
fect of having a balanced or unbalanced sample from the
population. The balance here refers to the equal number
of observations in different diameter classes. The prob-
lems with varying data ranges, as well as the selection of
the optimal model shape, were left out from this study.

In each of the three modelling cases, we simulated four
modelling and corresponding test data sets (Figure 1):

1. Balanced data simulated with parametric regression
RB

2. Balanced data simulated with non-parametric k-nn
KB

3. Unbalanced data simulated with parametric regres-
sion RU
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Figure 1: The flowchart of the tests carried out in each modelling task, assuming the modelling and test data coming
from similarly distributed but independent samples (B/B or U/U).

4. Unbalanced data simulated with non-parametric k-
nn KU

The two simulation methods with different assump-
tions represent two different populations, and the bal-
anced and unbalanced set two different samples from
each of the populations.

Each modelling and test data set was then used
for testing both regression method and k-nn method,
producing eight different models and eight different
tests: RB/BR, RU/UR, RB/BK, RU/UK, KB/BR,
KB/BK,KU/UR,KU/UK (Figure 1). In addition, we
made a test where the modelling data were balanced
and the test data unbalanced and vice versa, producing
additional 8 tests RB/UR, RU/BR, RB/UK, RU/BK,
KB/UR, KB/UK,KU/BR,KU/BK. Thus, we used dif-
ferent types of samples of each population for modelling
and testing. Overall, for each of the three modelling
problems there were 16 different tests carried out, but
not all the results are shown.

3 Material

The data consisted of observations from the perma-
nent sample plots of the Finnish National Forest Inven-
tory (NFI) (Valtakunnan... 1986, Tomppo, 2006). All

the Northern NFI plots were excluded from the analysis.
The sample plots were measured systematically on

field tracts located throughout the country. Each tract
included four plots, the centres of which were located
400 m apart (from north to south), the tracts themselves
being 16 km apart (from north to south and from east to
west). Trees with dbh larger than 10 cm were assessed in
circular plots of 0.03 hectare and trees with dbh smaller
than 10 cm in plots of 0.01 hectare. Tree species and dbh
were measured from all trees within plot. Furthermore,
each tree within the circle with radius half that of the
plot was measured as a height sample tree.

NFI plot data measured in 1995 were used as mod-
elling data for mean height (NFI mean height data) and
height (NFI height data). NFI plot data measured both
in 1985 and 1995 were used as modelling data for mortal-
ity (NFI mortality data). The average values for the tree
and stratum variables of the plots of the three datasets
are presented in Table 1.

4 Methods

4.1 Parametric models Mean height (HgM ), tree
height (h) and tree mortality were first modelled in three
original NFI datasets. The selected model forms were
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Table 1: Summary statistics for tree (height and mortality) and stratum (mean height) characteristics in three NFI
data sets.

Data Species n Variable Mean SD Min. Max.
Mean height Spruce 1001 DgM , cm 18.6 8.3 0.7 46.5

Spruce 1001 HgM , m 14.6 6.4 1.6 35.1
Height Pine 6279 dbh, cm 12.8 7.5 0.3 47.2

Pine 6279 h, m 9.9 5.4 1.4 28.6
Mortality Pine, alive 19673 dbh, cm 15.5 9.7 0.1 46.0

Pine, dead 654 dbh, cm 16.1 10.5 0.1 45.0

later also used for modelling in the simulated datasets.
In case of mean height, a simple linear regression model
with mean diameter (DgM ) as an independent variable
was fitted to NFI mean height data

HgMi = a0 + a1DgMi + ei (1)

where a0and a1 are parameters, HgMi is the mean
height, DgMi is the mean diameter and eirandom error
in stand i. In case of tree height, different parametric
regression models with tree dbh and its modifications as
independent variables depending on the model were fit-
ted to NFI height data, and the most accurate model
was selected. The chosen regression model was

hi = a0 + a1dbhi + a2dbh2
i + ei (2)

where a0 , a1 and a2 are parameters, hi is the height,
dbhi is the diameter and ei random error for tree i.

Individual tree mortality was modelled with logistic
regression as a parametric model, and was fitted to NFI
mortality data. The response variable p was a binary
variable indicating whether tree survives (p = 1) or dies
(p = 0). Dbh and some of its modifications were tested
as independent variables, and finally dbh and dbh2 were
chosen as independent variables. The logistic model was
formulated as follows:

pi =
1

1 + e−(a0+a1dbh2
i +a2dbh2

i )
+ ei (3)

where a0,a1 anda2were parameters to be estimated, pi

is the probability of surviving, dbhi is the diameter and
ei random error for tree i.

4.2 Non-parametric models The k- nearest neigh-
bour method (k-nn e.g. Härdle 1989, Altman, 1992) was
used as a non-parametric method in the three modelling
tasks. The estimates of the mean height and height for
the target observations were calculated as weighted av-
erages of the k nearest observations as

ŷj =
∑k

i=1 wijyi∑k
i=1 wij

(4)

where k is a number of nearest neighbours used, yi is
the observed value of dependent variable (mean height
HgM , height h or propability p according to the mod-
elling task) of neighbouring tree/stratum i, ŷ is the re-
spective prediction for target observation j and wij is
the weight of a neighbouring tree/stratum i for the tar-
get tree/stratum j. The weight was calculated as follows:

wij =

(
1

1+dij

)pm

∑k
i=1

(
1

1+dij

)pm (5)

where dij is the similarity distance between i and
j and pm is the weighting parameter (i �= j) (e.g.
Haara et al.1̃997, Sironen et al.2̃008). It was defined
as

dij =
L∑

l=1

cl |xil − xjl| (6)

where L is the number of independent variables (here
one, i. e. dbh or DgM ), and c their respective weights.

Table 2: Frequencies of observations by mean diameter
classes of the NFI mean height data and both simulated
balanced and unbalanced datasets.

Class Mean di-
ameter
range, cm

NFI
mean
height
data, n

Un-
balanced
model
and test
data, n

Balanced
model
and test
data, n

1 0-4.999 46 460 1111
2 5-9.999 81 810 1111
3 10-14.999 251 2510 1111
4 15-19.999 210 2100 1111
5 20-24.999 188 1880 1111
6 25-29.999 120 1200 1111
7 30-34.999 74 740 1111
8 35-39.999 25 250 1111
9 40- 6 60 1111
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Table 3: Frequencies of trees by diameter classes of the NFI height data and both simulated balanced and unbalanced
data.

NFI height data Simulated unbal-
anced

Simulated bal-
anced

Class Range, cm model test model test model test
1 0-4.999 525 534 525 534 351 347
2 5-9.999 607 623 615 615 342 356
3 10-14.999 985 969 992 962 342 356
4 15-19.999 532 566 546 552 368 330
5 20-24.999 283 244 269 258 338 360
6 25-29.999 117 116 107 126 358 340
7 30-34.999 66 52 63 55 362 336
8 35-39.999 17 29 16 30 346 352
9 40- 7 7 7 7 333 362
Total 3140 3139 3140 3139 3140 3139

Table 4: Frequencies of trees and dead trees by diameter classes of the NFI mortality data and of the simulated
balanced and unbalanced test data. R: regression model, K: k-nn method, U: unbalanced dataset, B: balanced
dataset.

Trees totally, n Dead trees, n (%)
Dia-
meter
class

Range, cm NFI morta-
lity and un-
balanced
data

Bal-
anced
data

NFI mor-
tality
data

RU RB KU KB

1 0-4.999 4130 2032 238 (5.8) 228 (5.5) 111 (5.5) 233 (5.6) 114 (5.6)
2 5-9.999 4595 2032 142 (3.1) 176 (3.8) 79 (3.9) 146 (3.2) 64 (3.1)
3 10-14.999 5421 2032 165 (3.0) 149 (2.7) 57 (2.8) 160 (3.0) 60 (3.0)
4 15-19.999 2860 2032 61 (2.1) 63 (2.2) 47 (2.3) 62 (2.2) 44 (2.2)
5 20-24.999 1672 2032 28 (1.7) 33 (2.0) 41 (2.0) 29 (1.7) 35 (1.7)
6 25-29.999 972 2032 10 (1.0) 18 (1.9) 42 (2.1) 9 (0.9) 19 (0.9)
7 30-34.999 460 2032 6 (1.3) 9 (2.0) 44 (2.2) 6 (1.3) 25 (1.2)
8 35-39.999 161 2032 1 (0.6) 4 (2.5) 50 (2.5) 1 (0.6) 14 (0.7)
9 40-44.999 42 2032 2 (4.8) 1 (2.4) 48 (2.4) 1 (2.4) 50 (2.5)

10 45- 14 2032 1 (7.1) 1 (7.1) 145 (7.0) 1 (7.1) 124 (6.1)

The probability of mortality of the target tree was
predicted as the proportion of dead trees among the k
nearest neighbours. Tree diameter dbh was used as only
variable in distance function.

The weighting parameter pm and the number of near-
est neighbours k were determined using multi-objective
optimisation (e.g. Haara 2002). The non-linear pro-
gramming algorithm (Hooke and Jeeves 1984) was used
to find the combination of decision variables minimis-
ing the average absolute difference between the observed
and predicted value of each dependent variable (i.e.
mean height, tree height, and mortality) using leave-one-
out cross-validation. The computer program developed

by Osyczka (1984) was modified and adapted to deal
with the k-nn method. Optimization is needed, when
approaches such as canonical correlations (Moeur and
Stage 1995) are not used. However, also heuristic search
such as genetic algorithm could have been used (Tomppo
and Halme 2004). The optimal weighting parameter pm
was 1.445 and the optimal number of nearest neighbours
used in the calculations was 30 and 1.445.

In addition, a locally adjusted k-nearest neighbour
method (local k-nn method, e.g. Malinen 2003) was
also used to model mortality. In case of locally adjusted
mortality models, the amount of neighbours varied de-
pending on the diameter of the target tree. The amount
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of neighbour trees was derived from the number of trees
of the diameter class to which the target tree belonged,
i.e., in diameter classes, in which the number of trees
was smaller fewer neighbours were used.

4.3 Simulated datasets Balanced and unbalanced
datasets in regard to the independent variable, dbh or
DgM , were generated for each of the three modelling
problems. Observations in the original NFI datasets
were grouped to 5 cm dbh/DgM classes, and the amounts
of observations within each dbh/DgM class were calcu-
lated. In the case of height and mortality datasets, same
amount of trees within each dbh class as in NFI height
and mortality data were generated randomly for the sim-
ulated datasets. In the case of the NFI mean height data
the number of observations in each mean diameter class
was first multiplied by ten to get the same number of ob-
servations than in former two cases (Table 2). In other
two cases, the simulated datasets were as large as the
original ones (Tables 3 and 4).

In all three datasets most of the observations were
middle sized trees. Thus these datasets formed unbal-
anced modelling and test datasets. Balanced modelling
and test datasets consisted of same total amount of ob-
servations than unbalanced datasets, but the observa-
tions were divided approximately evenly between the di-
ameter classes.

Then, the values of dependent variables for each three
modelling problems were generated using parametric
and non-parametric models fitted to the original data.
In case of mean height and height models, a normally
distributed N(0,σ 2) random component δ was added to
the predictions. The variance of the distribution, σ 2,
was obtained from the residual variance of the respective
models fitted to the original NFI data (Table 3). In the
case of parametric regression, we assumed the variance
to be heteroscedastic, and simulated the errors using
relative standard error (h̃i = hi(1 + δi)). In the case
of k-nn, we assumed the variance to be homoscedastic,
and simulated the random components using a constant
(absolute) variance (h̃i = hi + δi). This was done in
order to produce slightly different populations. For the
sake of simplicity, we assumed non-correlated errors. In
all k-nn data simulations, the NFI datasets were used as
reference datasets.

In case of mortality models, the mortality rate of each
generated tree for 10 years period was first predicted
with fitted models. The averages of the predicted mor-
tality rates of the trees within each class were calculated,
and the amount of dead trees was achieved by multi-
plying these averages with the amount of trees within
diameter class. Dead trees were then selected randomly
within each diameter class.
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Figure 2: The relationship between mean diameter
(DgM) and mean height (HgM ) in observed NFI data
(a), and in two simulated unbalanced dataset, generated
by utilizing regression model (b) and by utilizing k-nn
method (c).

4.4 Accuracy characteristics The test criteria used
in the selection of variables and parameters of the two
methods were RMSEs and the prediction bias, estimated
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Table 5: Accuracy of the estimates of the mean height models of spruce in different settings and error indexes. R:
regression model, K: k-nn method, U: unbalanced dataset, B: balanced data set.

Simulation method Modelling
data

Test
data

Tested
method

RMSE
(%)

Bias
(%)

Error
Index

NFI mean height data U R 16.8 0.00 1.1879
NFI mean height data U K 16.4 0.08 0.1931
R B B R 16.2 -0.84 0.5226
R B B K 17.0 -0.90 0.8473
R U U R 16.8 0.07 0.7625
R U U K 17.7 0.12 0.9170
K B B R 16.0 0.00 1.1292
K B B K 13.6 -0.11 0.0698
K U U R 16.4 0.00 1.2147
K U U K 15.5 1.07 0.2941
R U B R 16.2 -1.2 0.5522
R U B K 16.6 -0.50 0.4951
R B U R 16.8 0.35 0.7298
R B U K 17.5 1.08 0.8272
K U B R 18.2 -4.65 1.1897
K U B K 13.7 0.39 0.1142
K B U R 17.6 3.97 1.1435
K B U K 15.5 0.81 0.1311

as

RMSE =

√√√√√∑n
i=1

(
Yi −

∧
Y
i

)2

n − 1
(7)

bias =
1
n

n∑
i=1

(
Yi −

∧
Y
i

)
, (8)

where Yi denotes the true value of the tree/stratum
characteristics, Yi denotes the predicted value of the
tree/stratum characteristics, and n is the number of
trees/strata. The relative RMSEs and biases were ob-
tained by dividing estimates of RMSEs and biases by
the averages of the true tree/stratum characteristics con-
cerned. In addition, we analyzed the accuracy (predic-
tion bias and variance) in dbh/DgM classes, and calcu-
lated an error index. The error index was calculated as
a mean of absolute differences of each diameter class.
In addition, average distances (in the feature space) of
the nearest neighbouring tree and 50 nearest trees were
calculated within each dataset, i.e. in the NFI data and
in the simulated datasets.

In k-nn calculations of the original NFI mean height
data, the accuracy was calculated using leave-one-out
cross validation because of the smaller amount of obser-
vations. In all other cases, k-nn results were calculated
using independent modelling and test datasets.

Figure 3: Average mean distances (mm) of the mean
diameters of the target trees from the mean diameters
of the 50 nearest neighbouring trees by mean diameter
classes on unbalanced and balanced model datasets.

5 Results

5.1 Mean height models of Norway spruce The
simulated dataset based on regression and simulated
errors based on relative error produced a population,
which imitate the true data very well with respect to
the variation (Figure 2). In k-nn-based dataset the vari-
ation of small trees was larger than in true data. On the
other hand, the k-nn based simulation produced dataset
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Figure 4: Residuals of mean height in the mean diameter classes for regression model in a) balanced and b) unbalanced
data, and for k-nn method in c) balanced and d) unbalanced data. Data were simulated using regression model.

that especially in the case of large trees imitated the
true data better than the regression-based dataset: with
largest DgM :s the dependency did not seem to be exactly
linear.

The average distances are somewhat different in the
NFI data and the simulated datasets. The difference is,
however, mostly due to the difference in sizes of these
datasets. The differences between balanced and unbal-
anced datasets seemed negligible, but when the distances
were examined within diameter classes, the distances in
the unbalanced datasets were clearly larger than those
in balanced data in extreme diameter classes (Fig. 3).

In the original data, the RMSE and error index was

smaller for k-nn and bias for regression (Table 5). How-
ever, zero bias in regression is due to not using an inde-
pendent test dataset. In the simulated data, the RMSEs
and prediction biases of the mean heights were quite
similar for both methods, and in both cases balanced
datasets gave better results than unbalanced datasets
(Table 5). When the results were examined within di-
ameter classes in test datasets generated with regres-
sion model, the methods were equally accurate (Fig. 4).
The error indices were smaller for the regression method
(Table 5). In case of k-nn method being the genera-
tion method of test data, the predictions of the k-nn
method were less biased than regression model predic-
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Figure 5: Residuals of mean height in the mean diameter classes for regression model in a) balanced and b) unbalanced
data, and for k-nn method in c) balanced and d) unbalanced data. Data were simulated using k-nn method.

tions (Fig. 5), and the error indices of k-nn method
were clearly smaller than those with regression model
(Table 5). In original data, the differences between the
methods were smaller with respect to RMSE than in the
simulated data, but with respect to the error index, the
differences were as high as in the data simulated with
k-nn.

Next we mixed the datasets so that when balanced
data were used for modelling, unbalanced data were used
for testing and vice versa. It means that the modelling
and test data had different distributions. When the data
simulation was based on regression, the RMSE of the k-

nn method improved, but that of the regression method
remained in the same level (Table 5). When the data
simulation was based on k-nn, the RMSE of regression
worsened, but that of the k-nn method remained at the
same level (Table 5). The average bias level was clearly
higher with both methods than in the case of similar test
and modelling data.

5.2 Height models of Scots pine In the test
dataset compiled of original NFI data, k-nn produced
smaller bias and error index, but slightly higher RMSE
than regression (Table 6). In the simulated data, the
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Figure 6: Residuals of the height of the diameter classes of pine for regression model in a) balanced and b) unbalanced
data, and for k-nn method in c) balanced and d) unbalanced data. Data were simulated using regression model.

average RMSEs and biases were a little smaller for bal-
anced datasets, whereas the differences between the pre-
dictions from the regression models and the k-nn method
were negligible (Table 6). When regression was the gen-
eration method, and the results were examined within
diameter classes, the predictions of the k-nn method
were a little less biased than regression model predic-
tions in both datasets (Fig. 6). The error indices of the
k-nn method were also smaller (Table 6). When the k-
nn method was generation method of model and test
data, classwise biases, as well as error indices of the k-
nn method were clearly smaller than those of regression

(Fig. 7, Table 6).

When the balanced and unbalanced datasets were
mixed, i.e. the distributions of the observations of the
modelling data and test data differed, the biases and
error indices increased in the same way as in the case
of mean height model (results not shown). The perfor-
mance order of the methods also could change: when re-
gression was the simulation method, the error indices of
regression model were now smaller than those obtained
with k-nn method. When the simulation method was
k-nn, no such change was observed.
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Table 6: Accuracy of the estimates of height models of spruce and error indexes. R: regression model, K: k-nn
method, U: unbalanced dataset, B: balanced data set.

Simulation method Modelling data Test data Tested method RMSE (%) Bias (%) Error Index
NFI height test data U R 23.50 0.92 0.5277
NFI height test data U K 23.82 -0.38 0.3830
R B B R 19.97 0.09 0.4608
R B B K 19.96 0.18 0.1227
R U U R 23.84 -0.27 0.5209
R U U K 24.17 -0.09 0.3398
K B B R 16.97 -0.45 0.5083
K B B K 16.62 -0.20 0.1706
K U U R 24.64 -0.02 0.9948
K U U K 24.3 0.30 0.2008

Table 7: Error indexes of mortality models of spruce. R: regression model, K: k-nn method, U: unbalanced dataset,
B: balanced data set, LK: locally adjusted k-nn method.

Simulation method Modelling data Test data Tested method Error Index
NFI mortality test data U R 0.007398
NFI mortality test data U K 0.007753
R B B R 0.004532
R B B K 0.000464
R U U R 0.009892
R U U K 0.005252
R U U LK 0.001891
K B B R 0.009947
K B B K 0.000455
K U U R 0.013936
K U U K 0.007179
K U U LK 0.003044

5.3 Mortality models of Scots pine In case of
balanced test data generated with regression model,
the predictions of both parametric and non-parametric
methods were mostly equal (Fig. 8 upper). Only in
the predictions of mortality of large trees, the non-
parametric model fitted slightly better. The error in-
dex was clearly better with k-nn method (Table 7). In
unbalanced mortality dataset, in turn, the predictions
of the parametric method were highly biased in large
diameter classes (Fig. 8 lower). This was also a case
for k-nn method, whereas in case of locally adjusted k-
nn method, the predictions were accurate also in large
diameter classes. Besides, the error index of locally ad-
justed k-nn method was clearly smallest (Table 7).

When the simulated data were generated with k-nn,
the differences between methods were more clear. The
regression method performed clearly worse than k-nn in
balanced (Fig 9 upper), but even more so in unbalanced
case (Fig 9 lower). The regression also performed clearly

worse than in the population simulated with regression.

When mortality of pine in balanced data was pre-
dicted with models, which had been fitted to unbalanced
data, the results were similar to the case where both
datasets were unbalanced (results not shown). Likewise,
in the opposite case, the results were similar to the case
where both datasets were balanced. In both cases, the
results were determined by the balance of the modelling
data.

5.4 The variance of predictions compared to the
original variance K-nn method and linear regression
were also studied with respect to their ability of retaining
the original variance. The results of the two methods
were quite similar in general. Depending on the case, the
k-nn method seemed sometimes better and sometimes
worse (Fig 10). Within diameter classes, k-nn seemed
to retain the variation better in middle classes, while
parametric model was often better in extreme classes.
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Figure 7: Residuals of the height of the diameter classes of pine for regression model in a) balanced and b) unbalanced
data, and for k-nn method in c) balanced and d) unbalanced data. Data were simulated using k-nn method.

In this study, k-nn method and linear regression were
compared in three modelling problems with the relation-
ship between the dependent and independent variable
varying from linear to highly non-linear. We used sim-
ulated datasets, in order to be able to test the influence
of assumptions concerning the properties of the popu-
lation. The assumptions of interest were that of true
model shape and homogeneity of variance. In addition,
we examined the effect of balance of the sample data.
We used independent test datasets to compare the para-
metric and non-parametric methods.

6 Discussion

The datasets used were simulated using either k-
nn method or linear regression model as basis, using
dbh/DgM as sole independent variable. The populations
simulated with these two methods varied with respect
to the model shape and homogeneity of variance. In
the populations generated with parametric regression,
the model form is exactly the same both in data simu-
lation and in modelling. The true model form was thus
known exactly. In the populations generated with k-nn,
the form of the relationship in simulated data was based
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Figure 8: Classwise mortality of pine in simulated
balanced (upper) and unbalanced (lower) test data
and classwise predictions of mortality of logistic model
(pred model) and k-nn method (pred knn). Data were
simulated using logistic model.

on observations. In this population there is no guaran-
tee the used parametric model form is “correct”, even
though it was deemed to be the best fitting model. In
the former case, we assumed the variance heteroscedas-
tic and in the latter case homoscedastic. We did not
test the compatibility of the generated (unbalanced) test
datasets with the true datasets, as with this large a
dataset the hypothesis of compatibility is likely to be
rejected.

In addition, we assumed all the errors independent.
This is a simplification from a true situation. This as-
sumption was left for further studies, as the experiment
included quite many datasets and assumptions as it is.
However, as accounting for the correlations is much less
studied in the case of non-parametric methods (see Siro-
nen et al.2̃010), it is important to study it in the future.

The average RMSEs of the methods were quite simi-
lar, and in both cases balanced modelling dataset gave

Figure 9: Classwise mortality of pine in simulated
balanced (upper) and unbalanced (lower) test data
and classwise predictions of mortality of logistic model
(pred model) and k-nn method (pred knn). Simulated
data have been generated by k-nn.

better results than unbalanced dataset. It is often as-
sumed that k-nn retains the variation original better
than regression. In the studied case, with a high number
of neighbours, this is not self-evident. However, in un-
balanced dataset the k-nn seemed to retain the variation
a little better than regression, while in balanced case the
situation seemed to be opposite. The variation in both
cases seemed more difficult to retain with the extreme
values of independent variables.

It can be proved that k-nn results are biased towards
the mean with the extreme values of the independent
variables (Magnussen et al.2̃010). In the case of regres-
sion, this sort of bias should not occur. When the results
were examined within diameter classes, the k-nn results
were, however, less biased than regression model results
with these extreme dbh/DgM classes. The differences
increased with increasing non-linearity of the model and
increasing unbalance of the data. It was a bit surpris-
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Figure 10: Standard deviations of a) the observed and
predicted heights in balanced data and b) the observed
mean heights and predicted mean heights in unbalanced
data with respect to diameter classes.

ing that even when the true model form was known (i.e.
the fitted model had the same form that was used as
a basis for the simulation), and the non-linearity was
light or nonexistent, parametric models produced mod-
els with increasing bias in the largest diameter classes
in an unbalanced data (Fig. 4, 6 and 8). It seems thus
that parametric models are not safe from the bias at the
extremes, although that bias cannot be analytically de-
rived in the same way as for the non-parametric models.

In this study, the datasets were generated with two
different methods, namely regression and k-nn. In
all three cases, regression performed clearly better in
dataset generated with regression than with k-nn. Like-
wise, k-nn performed better when the data were gen-
erated with k-nn rather than with regression. This is
not a surprise as such. What is more interesting is that
in this case also the differences between regression and
k-nn were more pronounced (Fig. 5, 7 and 9).

This is most probably due to the fact that in the
first one, the model is smooth and its correct form is

known while in the latter, the model is not necessarily
as smooth and the correct form is not exactly known.
Thus, it seems that parametric regression is very sensi-
tive to the form of the true model, while the k-nn is not.
The best performance of linear regression can then only
be achieved when the true model form is known.

The variance assumptions did not seem to have any
marked effect here. Even when the datasets were mixed
so that the modelling dataset was heteroscedastic and
the test data were homoscedastic or vice versa, the vari-
ance assumption did not seem to have any effect. On the
other hand, it is possible that the heteroscedastic dataset
has influential observations, i.e. observations that have
extreme diameter and a large error, which may affect
to the coefficients of the model. This may partly ex-
plain the bias in the largest diameter classes. If so, then
studying this effect is important in the future. Anyway,
it seems that k-nn is safer against such influential ob-
servations. The locally adjusted k-nn was only tested
with respect to mortality model, but it seems to give
the best results in all different cases, and it is thus the
most robust of the studied methods.

This result, however, requires that the modelling and
test datasets have a similar distribution: if the distribu-
tions are different, for instance the ranges of the datasets
are not similar, regression model may be more robust.
In the studied cases, the differences between the distri-
butions were examined by mixing balanced and unbal-
anced datasets, i.e. by examining if model estimated
with balanced data works well in unbalanced test data
and vice versa. In this analysis, regression-based model
performed almost as well as in the original cases, pro-
vided the true model form was known (Tables 5 and
6). Nonetheless, especially in case of high non-linearity,
like mortality with respect to diameter, use of balanced
data as a modelling data can produce more accurate
estimates in unbalanced test data compared with situa-
tion, in which independent unbalanced data are used as
a modelling data and balanced data as a test data.

The study results of the differences between paramet-
ric and non-parametric methods in modelling mortality
follow the results of Vieilledent et al.2̃009. The increas-
ingly biased estimates of the unbalanced test datasets
with respect to increasing non-linearity makes it impor-
tant to evaluate the models in situation, in which the ex-
trapolation outside the limits of the modelling data can
be possible (e.g. Hamilton 1990, Magnussen et al.2̃010).
Overall, non-parametric methods seem more robust than
parametric with highly non-linear settings. Likewise, it
seems to be a more robust option in unbalanced data.
It should be further studied, however, if a small number
of observations would favour using regression methods.
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