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Abstract. Spatially-explicit harvest scheduling models optimize the spatiotemporal layout of forest
management actions to best meet management objectives such as profit maximization, even flow of
products, or wildlife habitat preservation while satisfying a variety of constraints. This investigation
focuses on modeling maximum harvest opening size restrictions whose role is to limit the size of contiguous
clear cuts on a forested landscape. These restrictions, a.k.a. green-up constraints, allow adjacent forest
stands to be cut within a pre-specified timeframe, called green-up period, only if their combined area does
not exceed a limit. We present a strengthening procedure for one of the existing integer programming
formulations of this so-called Area Restriction Model and test the computational performance of the new
model on sixty hypothetical and seven real forest planning applications. The results suggest that the
strengthened model can often outperform the other three existing formulations. We also find that the
original Path Model is still competitive in terms of solution times.
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1 Introduction

Spatially-explicit harvest scheduling models optimize
the spatial layout of forest management actions over
time to best meet management objectives such as profit
maximization, even flow of products, or wildlife habi-
tat preservation while satisfying a variety of constraints,
including maximum harvest opening size restrictions.
These models assign various silvicultural prescriptions,
such as clear cuts, thinning or shelterwood treatments,
to forest management units (see polygons on Fig. 1).
Other spatial decisions, road-building being one exam-
ple, may also be part of harvest scheduling models. Man-
agement decisions, such as whether to cut a manage-
ment unit or not, or whether to build a road link in a
particular planning period are typically modeled using
0-1 variables. Harvest scheduling models such as these
are thus 0-1 programs. A variety of restrictions, some
spatially-explicit and some not, may also be modeled,
including timber-flow constraints (e.g., Thompson et al.
1994), target ending age or inventory constraints (e.g.,
McDill and Braze 2000), or maximum harvest opening
size restrictions (e.g., Meneghin et al. 1988), which are
the focus of this paper.

Adjacency constraints (a.k.a. green-up or maximum
harvest opening size constraints) limit the size of con-
tiguous clear-cuts. These restrictions, which are often
part of legal requirements or certification standards in
North America (e.g., Barrett et al. 1998, Sustainable
Forest Initiative 2010, Boston and Bettinger 2002), have
been promoted as a tool to mitigate the negative impacts
of timber harvests (e.g., Thompson et al. 1973, Jones et
al. 1991, Murray and Church. 1996a, 1996b, Snyder and
ReVelle 1996a, 1996b, 1997a, 1997b, Carter et al. 1997,
Murray 1999). Although maximum harvest opening size
constraints spatially disperse the harvest activities, and
thus relieve the landscape from the concentration of this
type of human disturbance, they have also been shown
to fragment and disperse mature forest habitat (Harris
1984, Franklin and Forman 1987, Barrett et al. 1998,
Borges and Hoganson 2000). To mitigate these negative
consequences, Rebain and McDill (2003a, 2003b) pro-
posed a 0-1 programming formulation that allows the
forest planner to promote or to require the preservation,
maintenance or creation of a certain amount of mature
forest habitat in large patches over time in models with
maximum harvest opening size constraints. A draw-
back of combining both harvest opening size and mature
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Figure 1: Strengthening 2-, 3-, and 4-Way Covers

patch habitat constraints is that the resulting models are
large, complex, and hard to solve. Improving either the
structure of the harvest opening size constraints or the
mature patch habitat constraints can potentially make
these models easier to solve. The focus of this study
is to improve the structure of the harvest opening size
constraints.

The simplest type of maximum harvest opening size
constraints prevents adjacent management units from
being harvested within the same time period (McDill
and Braze 2000). This case, referred to as the Unit Re-
striction Model (URM, Murray 1999), assumes that the
combined area of any two units in the forest would ex-
ceed this maximum area. The Area Restriction Model
(ARM, Murray 1999) is more general, allowing groups
of contiguous management units to be harvested con-
currently as long as their combined area is less than
the maximum opening size (Amax). Depending on the
average area of management units, the maximum har-

vest opening size, and the age-class distribution of the
forest, the ARM formulation might allow for a signif-
icantly higher net present value (NPV) of the forest.
Unfortunately, formulating and solving forest planning
problems with ARM constraints is generally consider-
ably more difficult than formulating and solving such
problems with URM constraints. In fact, ARM prob-
lems were initially deemed impossible to formulate in a
linear model (Murray 1999) and only heuristics were em-
ployed to solve them (e.g., Lockwood and Moore 1993,
Caro et al. 2003, Richards and Gunn 2003).

McDill et al. (2002) were among the first to de-
velop exact, linear, 0-1 programming formulations of the
ARM. One of their two formulations uses constraints
that are designed to allow groups of contiguous man-
agement units to be harvested as long as their com-
bined area does not exceed the maximum harvest open-
ing limit. McDill et al.(2002) present an algorithm,
which they call the Path Algorithm, that recursively

mailto://toths@uw.edu
http://mcfns.com
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enumerates all sets of contiguous management units, set
C, whose combined areas just exceed the maximum al-
lowable harvest size. The constraints created this way
are similar to cover inequalities in 0-1 knapsack prob-
lems, thus we frequently refer to the path constraints
as cover inequalities in this paper. The disadvantage
of this Path/Cover formulation is that the number of
constraints that are required can be very large and it
can increase exponentially as the ratio of the average
size of a management unit to the maximum allowable
harvest opening area decreases. The advantage of the
Path/Cover formulation over McDill et al.’s (2002) sec-
ond formulation, discussed next, is that it does not re-
quire the introduction of additional 0-1 decision vari-
ables.

McDill et al.’s (2002) second formulation uses sep-
arate variables for each possible combination of con-
tiguous management units within the forest whose to-
tal area does not exceed the allowable harvest opening
size. The authors refer to these combinations as Gen-
eralized Management Units (GMUs). For each adjacent
pair (or clique) of original management units, a pair-
wise (or clique) adjacency constraint is written, where
the set of decision variables include all of the variables
that correspond to the GMUs that contain the original
units. Goycoolea et al. (2005) applied maximal clique
constraints to GMUs to formulate ARM problems and
found that these formulations performed better. They
also showed that the maximal clique GMU formulation,
which they called as the Cluster Formulation is at least
as tight or tighter than the Path Formulation and leads
to better linear programming relaxations (Goycoolea et
al. 2009).

The third exact 0-1 programming formulation of ARM
was proposed by Constantino et al. (2008). This
approach is very different from the Path/Cover and
GMU/Cluster formulations in that it does not rely on a
recursive, potentially time consuming a priori enumera-
tion of spatial constructs such as minimally infeasible (as
in the Path Model) or feasible clusters of management
units (as in the GMU Model). The recognition that the
number of clearcuts in a forest cannot exceed the num-
ber of management units gives rise to the definition of
a parsimonious set of clearcut assignment variables that
represent the decision whether a unit should be assigned
to a particular clearcut (also referred to as ”bucket” in
Goycoolea et al. 2009) or not in a given planning period.
In the context of Constantino et al.’s (2008) model, a
clearcut or bucket may comprise units that are discon-
nected. Additional constraints are present in the formu-
lation to ensure that the area of these clearcuts never
exceeds the maximum opening size and that two or more
clearcuts never overlap or are never adjacent. Since the
number of assignment variables in this formulation is

bounded by n×n, where n is the number of management
units in the forest, Constantino et al.’s (2008) model
leads to smaller problems than the other two formula-
tions when the maximum harvest opening size is large.
Further, substantial reductions in problem size are pos-
sible by eliminating those assignments from the model
where the area of the minimum-area path between the
two management units involved is greater than the max-
imum harvest opening size. Such assignments can be
found very efficiently by the Floyd-Warshall (Roy 1959,
Floyd 1962 or Warshall 1962) or other minimum-weight
shortest path algorithms. Recent findings evidence that
Goycoolea et al.’s (2005) maximal clique constraints pro-
vide a tighter approximation of the convex hull of the
ARM than the constraints in the Bucket Model (Mar-
tins et al. 2011).

Lastly, we mention two other formulations of the
ARM, one of which can be viewed as an extension of
the Path model. Crowe et al. (2003) appended what
they call “ARM clique constraints” to McDill et al.’s
(2002) cover inequalities, arguing that the “clique” con-
cept can be applied to ARM models if the total area of a
mutually adjacent set of management units exceeds the
maximum opening size. Crowe et al. (2003) “clique con-
straints” are written for each mutually adjacent set of
units, where the left-hand-side coefficients are the areas
of the units and the right-hand-side is the allowable cut
limit. Crowe et al. (2003) found that the appended for-
mulation did not outperform the Path/Cover approach
computationally. It can be shown, however, that some of
these ARM clique constraints cut off fractional solutions
from the feasible set defined by the Path/Cover formula-
tion, and thus they may be used to better approximate
the ARM mathematically.

The same can be said about Gunn and Richards’
(2005) “stand-centered” constraints that can also be an
alternative to or complement McDill et al.’s (2002) cover
inequalities. One stand-centered constraint is written for
each management unit and period. The constraint pre-
vents the harvest of the unit in the specified period if the
combined area of the adjacent units that are scheduled
for harvest in that period exceeds the cut limit minus
the area of the unit. Gunn and Richards (2005) observe
that these constraints do not prevent every possible har-
vest area violation, but they argue that these violations
will be few when the areas of management units are not
too small compared with the harvest opening area limit
and that those that do occur can be easily detected and
“post-fixed” at a relatively small loss in optimality. Al-
though Gunn and Richards’ (2005) model is not an exact
formulation of the ARM, it is attractive for two reasons.
First, the number of stand-centered constraints needed is
equal to the number of units in a forest, which is much
less than the number of covers that might be needed.
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Second, unlike finding McDill et al.’s (2002) covers, gen-
erating stand-centered constraints does not require a po-
tentially very time-consuming recursive enumeration.

In this paper, we present a procedure that strengthens
the cover inequalities introduced as path constraints by
McDill et al. (2002), and show that the strengthened for-
mulation can lead to solution times that are shorter than
what is provided by the other models. The contribution
is in the procedure itself that leads to a demonstrably
tighter formulation of the ARM than the Path/Cover
model without introducing additional variables. While
the proposed procedure is conceptually similar to the
one that have been used for 0-1 knapsack problems in
the operations research literature (Wolsey 1998, p.147),
the ARM requires sequential coefficient lifting because
of the adjacency restrictions that are imposed on the
management units. This additional level of complex-
ity leads to a markedly different, and more complex,
strengthening algorithm than the one used for 0-1 knap-
sack inequalities.

In the next section, we formally describe the three
existing integer programming formulations of the ARM
that we will use as benchmarks to assess the perfor-
mance of the strengthened model. The structure of the
strengthened path/cover constraints will be discussed
next, followed by a description of the strengthening al-
gorithm that can be used to automate the process of
creating these constraints. The computational efficiency
of the strengthened formulation is assessed by formulat-
ing and solving sixty hypothetical and seven real harvest
scheduling problems in four ways: (1) with the original
path/cover inequalities of McDill et al.(2002), (2) with
Goycoolea et al.’s (2005) maximal clique-based Cluster
Formulation, (3) with Constantino et al.’s (2008) Bucket
Formulation, and (4) with the strengthened pathy/cover
inequalities proposed in this paper. We find that not
only does the strengthened model lead to better solu-
tion times in many application instances, but the results
also suggest that the original Path Formulation is still
competitive relative the Cluster Model. This is a some-
what surprising result given that the performance of the
Cluster Model has previously been found to be superior
to that of the Path Model (Goycoolea et al. 2009). The
paper concludes with a discussion on how the strength-
ening procedure could potentially be further improved.

2 The benchmark ARM model formu-

lations

2.1 The Path/Cover Model (McDill et al. 2002)
The general structure of the spatially explicit ARM
model, where the adjacency constraints are generated

by the Path Algorithm, is as follows:

Max Z =
M∑

m=1

Am[cm0xm0 +
T∑

t=hm

cmtxmt] (1)

Subject to:

xm0 +
T∑

t=hm

xmt ≤ 1 (2)

for m = 1, 2, ..., M∑
m∈Mht

vmt · Am · xmt − Ht = 0 (3)

for t = 1, 2, . . . T

bl,tHt − Ht+1 ≤ 0 (4)

for t = 1, 2, . . . T -1

−bh,tHt + Ht+1 ≤ 0 (5)

for t = 1, 2, . . . T -1∑
j∈C

xjt ≤ |C| − 1 (6)

∀C ∈ C and for t = hC , . . . T

M∑
m=1

Am[(AgeT
m0 − Age

T
)xm0+

+
T∑

t=hm

(AgeT
mt − Age

T
)xmt] ≥ 0 (7)

xmt ∈ {0, 1} (8)

for m = 1, 2, ..., M and t = hm, . . . T

Ht ≥ 0 (9)

for t = 1,. . . T, where:
hm= the first period in which management unit m

(m is the unit ID) is old enough to be har-
vested,

xmt = a binary variable whose value is 1 if manage-
ment unit m is to be harvested in period t for
t = hm, ... T ; when t = 0, the value of the
binary variable is 1 if management unit m is
not harvested at all during the planning hori-
zon (i.e., xm0 represents the “do-nothing” al-
ternative for management unit m),

M = the number of management units in the forest,
T = the number of periods in the planning horizon,
cmt = the discounted net revenue per hectare plus

the discounted expected forest value at the
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end of the planning horizon if management
unit m is harvested in period t. If unit m
is not cut at all (i.e., xm0 = 1), then cm0 is
equal to the discounted expected forest value
at the end of the planning horizon.

Mht = the set of management units that are old
enough to be harvested in period t,

Am = the area of management unit m in hectares,
vmt = the volume of sawtimber in m3/ha harvested

from management unit m if it is harvested in
period t,

Ht = the total volume of sawtimber in m3 harvested
in period t,

bl,t = a lower bound on decreases in the harvest
level between periods t and t+1 (where, for
example, bl,t = 1 would require non-declining
harvests and bl,t = 0.9 would allow a decrease
of up to 10%),

bh,t = an upper bound on increases in the harvest
level between periods t and t+1 (where bh,t

= 1 would allow no increase in the harvest
level and bh,t = 1.1 would allow an increase
of up to 10%),

C = the set of indexes corresponding to the man-
agement units in cover C,

C = the set of covers that arise from a forest plan-
ning problem,

hC = the first period in which the youngest man-
agement unit in cover C is old enough to be
harvested,

AgeT
mt = the age of management unit m at the end

of the planning horizon if it is harvested in
period t ; and

Age
T

= the minimum average age of the forest at
the end of the planning horizon.

Equation (1) specifies the objective function of the
problem, namely to maximize the discounted net rev-
enue from the forest during the planning horizon plus
the discounted forest value of each stand at the end of
the planning horizon. The first set of constraints (2) con-
sists of logical constraints. They require a management
unit to be assigned to at most one prescription, including
a do-nothing prescription. Harvest variables (xmt) are
only created for periods where the stand is old enough to
be harvested (i.e., it is older in that period than the pre-
defined minimum rotation age). The second set of con-
straints (3) consists of harvest accounting constraints.
They sum the harvest volume for each period and assign
the resulting value to the (continuous) harvest account-
ing variables (Ht). Constraint sets (4) and (5) are flow
constraints. They limit the rate at which the harvest
volume can increase or decrease from one period to the

next. Constraint set (6) represents the maximum har-
vest opening constraints as minimal covers generated by
the Path Algorithm. These constraints assume that the
exclusion period equals one planning period, i.e., that
once a management unit, or group of contiguous units,
has been harvested, no adjacent management units can
be harvested until at least one period has passed. The
structure of these constraints is easy to generalize to al-
ternative exclusion periods which are integer multiples
of a planning period (see, for example, Snyder and ReV-
elle 1997b). Constraint (7) is an ending age constraint.
It requires the average age of the forest at the end of
the planning horizon to be at least Age

T
years. These

constraints help prevent the model from over-harvesting
the forest during the planning horizon and define a min-
imum criterion for a desirable ending condition of the
forest. Constraint (8) identifies the management unit
treatment alternative variables as binary. Constraints
(9) restrict the harvest volume accounting variables to
be positive and continuous.

2.2 The Cluster Model (Goycoolea et al. 2005
– EARM-4) Unlike the Path Model that uses man-
agement unit-based variables, the Cluster Model uses
cluster variables, xut ∀u ∈ G, t = hu, ..., T where:

u = indexes clusters of management units, m ∈ M ,
that form connected sub-graphs within the
adjacency graph associated with the set of
units in the forest with a condition that∑

j∈u aj ≤ Amax. The adjacency graph of
a forest planning problem is a set of nodes
that represent the management units, and
a set of edges that represent the adjacency
among the units. Only units sharing a com-
mon boundary are considered adjacent.

G = the entire set of clusters that arise from a par-
ticular forest; and

hu = the first period in which the youngest man-
agement unit in Cluster u is old enough to
be cut.

Cluster variable xut takes the value of one if Cluster u
is to be cut in period t, 0 otherwise. The variable xu0

represents the special decision whether Cluster u should
be cut during the entire planning horizon: a value of one
indicates that it should not and a zero indicates that it
should.

The Cluster Formulation requires a set of logical
constraints that are slightly different from those of the
Path Model (Constraints 2):

∑
u∈Gm

(
xu0 +

T∑
t=hu

xut

)
≤ 1 (10)

for m = 1, 2, ...,M, where Gm denotes the set of clusters
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that contain management unit m. Constraint set (10)
simply requires that unit m can only be cut or not cut
as part of at most one cluster.

To ensure that the clusters that are cut in the same
planning period are never adjacent or overlapping, the
following inequality is added to the model for each maxi-
mal clique of management units and for each time period
when the youngest unit in the clique is old enough to be
cut. Maximal cliques are sets of mutually adjacent man-
agement units that are not strictly subsets of any other
cliques: ∑

n∈Kjt

xnt ≤ 1 (11)

for all j ∈ J and t = hj, ..., T, where:
Kjt = the set of indexes corresponding to the set of

clusters that 1) contain at least one unit in
maximal clique j of the original management
units and 2) where all the stands comprising
the cluster are old enough to be harvested in
period t.

hj = the first period in which the youngest unit in
clique j is old enough to be harvested, and

J = the entire set of maximal cliques of management
units that exist in the forest.

Constraint set (11) prevents maximum clear-cut size
violations. The harvest volume accounting and flow con-
straints, as well as the minimum average ending age con-
straint are the same as in the Path Model (inequalities
3-5 and 7), except that the unit variables are replaced
with cluster variables and the volume, area and age co-
efficients refer to the clusters instead of the management
units.

2.3 The Bucket Model (Constantino et al. 2008
– ARMSCV-C) To formulate the Bucket Model, we
define K as a class of clearcuts. Each clearcut is uniquely
indexed by a management unit (stand). Thus, |K| = M ,
where M is the number of units in the forest. Further,
the elements of a clearcut Ki ∈ K are management units
defined by the following function (0-1 program). Func-
tion (12)-(15) assigns a set of units, (which can be the
empty set) to each clearcut via the use of binary vari-
ables xit

m that take the value of 1 if unit m is assigned
to clearcut i in period t. The value of this variable is 0
otherwise.

Max Z =
M∑

m=1

∑
i∈K

am[cm0x
i0
m +

T∑
t=hm

cmtx
it
m] (12)

Subject to:

T∑
t=0,t=hm

∑
i∈K

xit
m ≤ 1 (13)

for m = 1, 2, ..., M

M∑
m=1

amxit
m ≤ Amax (14)

for i ∈ K and t = hm, . . . T

xit
m ∈ {0, 1} (15)

for i ∈ K : i ≤ m and t = hm, . . . T .
Equation (12), the objective function, is equivalent

to Equation (1) in the Path Model. It maximizes the
discounted net timber revenues from the forest over the
planning horizon. Constraint set (13) comprises the logi-
cal constraints for the Bucket Model. They allow a man-
agement unit to be harvested only once in the planning
horizon or not at all. Constraints (14) prevent the for-
mation of any clearcut i in class K whose area exceeds
the maximum harvest opening size. Lastly, constraint
set (15) defines variables xit

m as binary. We note that
the assignment variables are only defined for i ≤ m to
minimize problem size.

Note that since constraint set (14) does not prevent
clearcuts in class K from being adjacent or overlapping,
it alone cannot prevent maximum harvest opening size
violations. Additional constraints are necessary. To that
end, Constantino et al.’s (2008) model introduces a new
set of binary variables of form wit

Q that take the value of
one whenever a unit in maximal clique Q ∈ Q is assigned
to clearcut i in period t. As with the GMU/Cluster
Model (Section 2.1), set Q, the set of maximal cliques
of management units, must be enumerated during the
model formulation phase. The following two constraint
sets, along with constraints (14) guarantee that the max-
imum harvest opening size is never exceeded. The con-
tribution of constraint sets (16)-(17) is to ensure that
the units in each maximal clique can only belong to at
most one clearcut in any given planning period:

xit
m ≤ wit

Q (16)

for Q ∈ Q, m ∈ Q, i ≤ m and t = hm, . . . T

∑
i∈K

wit
Q ≤ 1 (17)

for Q ∈ Q and t = hm, . . . T

wit
Q ∈ {0, 1} (18)

for i ∈ K, Q ∈ Q and t = hm, . . . T .
To account for harvest volumes in each planning pe-

riod and to ensure a minimum average ending age, we
modify constraint set (3) and (7) and add them to the
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Bucket Model (19-20). The harvest flow constraints are
identical to constraint sets (4-5).∑

m∈Mht, i∈K

vmt · am · xit
m − Ht = 0 (19)

for t = 1, 2, . . . T

∑
i∈K

M∑
m=1

am[(AgeT
m0 − Age

T
)xi0

m +

+
T∑

t=hm

(AgeT
mt − Age

T
)xit

m] ≥ 0 (20)

The model defined by (12-19) and (4, 5) is identical
to what Constantino et al. (2008) refer to as ARMSCV-
C. We add a minimum average ending age constraint
(20) to this model to prevent the forest from being over-
harvested. Finally, we used a variety of pre-processing
techniques, as proposed in Constantino et al. (2008) that
can reduce the size of the Bucket Model and improve
its computational performance. In the next section, we
show how the path/cover inequalities can be strength-
ened to make the Path Model tighter and potentially
easier to solve.

3 The Strengthened Path/Cover For-

mulation

The Strengthened Path Model is identical to the
original Path Model, Constraints (1)-(9) except that
Constraints (6) are replaced with a stronger inequality
set: set (21) below. The next two sub-sections describe
how this new inequality set can be derived from the orig-
inal path constraints, constraint set (6).

3.1 Strengthening the path/cover inequalities
In order to strengthen McDill et al.’s (2002) path for-
mulation, the structure of the path/cover constraints
must be studied first. The minimal path/cover inequal-
ities generated by McDill et al.’s (2002) Path Algo-
rithm are of form

∑
j∈C xjt ≤ |C| − 1, where C is a

set of management units that form a connected sub-
graph of the underlying adjacency graph, and for which∑

j∈C aj > Amax holds, but
∑

j∈C\{l} aj ≤ Amax for any
l ∈ C such that set C\{l} is still a connected sub-graph.

Set C can be called a “path,” as in McDill et
al.(2002), or, using the analogy with the cover inequali-
ties that arise in 0-1 Knapsack problems, it can be called
a “cover” (Wolsey 1998). These covers are minimal con-
nected sub-graphs because if any one unit is excluded
from C, the total area of the remaining management
units will be less than the harvest limit. For exam-
ple in Figure 1, the set of management units {13, 14,
43, 50} forms a minimal cover given an Amax of 48 ha.

Management unit IDs are listed for each polygon, along
with the area of the units in bold that are relevant to
the discussion. As an example, unit 50 is 13.3 ha in
size. Throughout the rest of this paper, it is assumed
that each management unit in the forest has an area
less than or equal to the allowable contiguous cut limit.
Thus, |C| ≥ 2, for any C ∈ C with C being the com-
plete set of all possible minimal covers that arise from
the forest planning problem.

To establish the notation that is necessary for
the strengthening procedure, we define the feasible
region of the ARM based on the Path Formulation
but without the logical, harvest flow and ending age
constraints (2)-(5) and (7): P = {xt ∈ {0, 1}n :∑

i∈C xit ≤ |C| − 1, ∀C ∈ C, t = hC , ..., T}, where
n is the number of units in the forest. For ev-
ery set of management units A, let N(A) represent
the set of all management units adjacent, but not
belonging, to A. Finally, let function π(s, t, C) =
max

{∑
j∈N(s)

T

C xjt : xt ∈ P and xst = 1
}

define the
maximum number of management units in Cover C that
are adjacent to unit s and can be cut concurrently with
unit s in period t. Note that while function π(s, t, C) is
an integer program in itself, it is trivial to solve by query-
ing set C , which has already been found via Algorithm I
(Goycoolea et al. 2009). The query can be instructed to
return the maximum cardinality of minimal covers that
(1) comprise units exclusively from set{s⋃ {N(s)

⋂
C}}

that can be cut in period t, and (2) contain unit s.
The value of function π(s, t, C) is equal to the maxi-
mum cardinality returned by the query minus 2. Then,
α∗

st = (|N(s)
⋂

C| − π(s, t, C) − 1) if hs ≤ t, 0 other-
wise.

Proposition 1: Consider a minimal cover C
and unit s ∈ N(C) : hs ≤ t. Define α∗

st =
(|N(s)

⋂
C| − π(s, t, C) − 1) as the coefficient of variable

xst. Then, for all αst ≤ α∗
st:∑

j∈C

xjt + αstxst ≤ |C| − 1 (21)

is valid for P .
Proof: Consider xt ∈ P . If xst = 0, then the in-

equality holds by the definition of minimal cover C. If
xst = 1, then∑
j∈C

xjt + αstxst =
∑

j∈C\N(s)

xjt +
∑

j∈N(s)∩C

xjt + αst

≤ |C\N(s)| +
∑

j∈N(s)∩C

xjt + α∗
st

≤ |C\N(s)| + π(s, t, C) + α∗
st

= |C| − 1 �
After the terminology established by Wolsey (1998)

and others for 0-1 knapsack polytopes, we call
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∑
j∈C xjt + αstxst ≤ |C| − 1 for any 1 ≤ αst ≤ α∗

st

an extended cover inequality and the associated set,
E(C) = C ∪ {s} an extended cover.

To illustrate the use of Proposition 1, consider the
4-way cover, C = {13, 14, 43, 50}, in the 50-stand hy-
pothetical forest planning problem shown in Figure 1.
Taking s = {3}, we have that inequality x13,t + x14,t +
x43,t + x50,t + α3,tx3,t ≤ 3, where α3,t ≤ 2, is valid for
P . Also, note that neither s = {17}, nor s = {29} yield
stronger inequalities than x13,t+x14,t+x43,t +x50,t ≤ 3.

To see that Proposition 1 does not always lead to
the strongest possible inequalities, consider a forest that
comprises only five units: unit 1, 2, 3, 4 and s. As-
sume that ast = 2, a1t = a2t = a3t = a4t = 1, and
Amax = 3. Now suppose also that N(1) = {2, 3, 4},
N(2) = {1, 3, s}, N(3) = {1, 2, 4, s}, N(4) = {1, 3, s}
and N(s) = {2, 3, 4}. Clearly, C = {1, 2, 3, 4} is a
cover and Proposition 1 leads to E(C) = C ∪ {s} with
α∗

st = 1. However, E(C) with αst = 2 is also valid and
is stronger.

Now, consider a situation where, for a given mini-
mal cover C, there exist two or more management units,
s ∈ N(C), for which α∗

st ≥ 1. Let QCt denote this
unique set of management units, which we will call the
“cover extension set” for C in time t. The question is,
when |QCt| ≥ 2, which subset or subsets of QCt can be
added, and with what coefficients to minimal cover C so
that the resulting constraint(s) would be valid in P. To
illustrate this situation, consider the minimal cover C =
{18, 31, 40} in Figure 1. Using Proposition 1, we find
that QCt={6, 8, 15}. While extended covers {18, 31, 40,
6, 15} and {18, 31, 40, 8} both lead to valid inequalities,
{18, 31, 40, 6, 8, 15} does not.

We use the term “compatible” to describe subsets of
QCt that can be included together in a single extended
cover constraint. The issue of compatibility is compli-
cated by the fact that in some cases the coefficients of
the units in the cover extension set can be lifted to α∗

st>
1 when they are included singly in an extended cover
constraint, but these units may only be compatible with
other units in the cover extension set when their coef-
ficients are not lifted (i.e., αst= 1) or when the coeffi-
cients are lifted but not all the way to α∗

st (e.g., αst= 2
< α∗

st=3).
Thus, for a set of coefficient values, ACt = {αst :

αst ∈ R+, αst ≤ α∗
st and s ∈ QCt} for minimal cover C,

we define the Compatibility Problem:

PA,C,t = max

⎧⎨
⎩
∑

s∈QCt

αstxst +

+
∑
j∈C

xjt : ∀αst ∈ ACt, xt ∈ P

⎫⎬
⎭ .

PA,C,t is a unique integer program that is trivial to solve
because the number of decision variables in the objec-
tive function is very small. If PA,C,t ≤ |C| − 1, then,
obviously,

∑
s∈QCt

αstxst +
∑

j∈C xjt ≤ |C| − 1 is valid
in P . We will refer to the evaluation of PA,C,t as the
Compatibility Test.

3.2 The Strengthening Algorithm The Strength-
ening Algorithm generates all of the non-dominated ex-
tended cover inequalities that can be developed from
the initial set of minimal covers. The goal is to tightly
approximate the convex hull of the Path/Cover Model
(conv(X)) described in Section 2.1. The flowchart in
Figure 2 illustrates each step of the algorithm.

The Strengthening Algorithm starts by selecting a
cover C from the complete set of minimal covers C

(Step [1] in Figure 2), generated by the Path Algorithm
(McDill et al. 2002). The set of management units that
are adjacent to at least two units in C, but not belong-
ing to C, is identified next [Step 2]. Let S (S ⊆ N(C))
denote this set (note: Proposition 1 implies that units
that are adjacent to only one unit in C cannot have an
α∗

st= 1). A management unit s is selected from set S
[Step 3] and the maximum value of its coefficient (α∗

st)
is calculated for period t = 1 [Step 4] using Proposition
1 [Step 5]. If α∗

st ≥ 1, then unit s enters the set QCt

[6]. Once all of the units in S have been processed [7],
the cardinality of QCt is evaluated. If |QCt| = 0, the
minimal cover C cannot be strengthened [8], and the
cover is discarded from C and a new minimal cover is
selected for evaluation [Step 25]. If |QCt| = 1, i.e., there
is only one unit, say unit m, that can be included in the
cover, a new, valid extended cover inequality of form∑

j∈C xjt + α∗
mtxmt ≤ |C| − 1 is built and added to the

integer programming problem [9]. Then, the algorithm
checks if the value of t is equal to the last period T [24].
If it is not, it moves to the next planning period [3] and
selects another candidate unit for cover extension (unit
s) and Proposition 1 is used again to calculate α∗

st. If
the value of t is already equal to T, then Cover C is
discarded from C and a new minimal cover is selected
Steps [25] and [1]. If in Step [9], |QCt| > 1, the Com-
patibility Algorithm is launched (Figure 2) to determine
which subsets of cover extension set QCt can be used to
form valid extended cover inequalities, and with what
maximum coefficients.

As the first step of the Compatibility Algorithm, the
coefficients of all management units in QCt are lifted
to the maximum values determined by Proposition 1
[10] (i.e., for ∀s ∈ QCt,αst := α∗

st). Let ACt denote
this coefficient set. Integer program PA,C,t is formu-
lated using ACt and is evaluated using the Compati-
bility Test [11]. If Coefficient Set ACt passes the test,
i.e., if the solution to PA,C,t is less than or equal to
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Figure 2: The Strengthening Algorithm
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|C| − 1 then a new, valid extended cover inequality of
form

∑
j∈C xjt +

∑
s∈QCt

α∗
stxst ≤ |C| − 1 is built and

added to the integer programming problem. If Coeffi-
cient Set ACt does not pass the test, a recursive, branch-
ing process takes place.

Coefficient Set ACt, as constructed in the previous
step, forms the root node of the subsequent branching
process. Starting from the root node, the algorithm sys-
tematically reduces the coefficient values of the units
in QCt and determines, using the Compatibility Test,
which coefficient sets would lead to valid extended in-
equalities. Each node in the branching process repre-
sents a coefficient set. If the extended cover inequality at
a node is not valid, new coefficient sets (i.e., new nodes)
are generated by reducing each coefficient by one, one at
a time. The algorithm terminates once all the nodes are
explored or if the remaining nodes represent coefficient
sets each containing only one non-zero coefficient (e.g.,
{2, 0, 0}).

In the first step of the branching process, a unit
is selected from QCt and the value of its coefficient is
reduced by one ([12] in Figure 2). If the coefficient of
the selected unit is already zero, which can happen if
the algorithm loops back to this unit repeatedly, then
another unit is selected from QCt [13]. Every time a
coefficient of a unit is reduced, the unit ID is recorded
in an array indexed by τq [12], where q counts the unit
IDs. The structure of this array is explained later in the
text.

If the reduced coefficient of the unit is zero then the
algorithm tests if there is another unit in QCt, say unit
s, for which αst = α∗

st while the coefficients of the rest of
the units are zero [14-15]. If this is the case then a new,
extended cover inequality of form

∑
j∈C xjt + α∗

stxst ≤
|C| − 1 is built and added to the integer programming
problem [16]. This inequality is valid by Proposition 1.
The branch that leads to the coefficient set that gives rise
to this inequality is fathomed [17]. If αst < α∗

st while
the coefficients of the rest of the units are zero, then
this coefficient set is ignored and the branch is fathomed
[17]. This coefficient set can be ignored because the
inequality that would result from this set,

∑
j∈C xjt +

αstxst ≤ |C| − 1, is dominated by a valid inequality:∑
j∈C xjt +α∗

stxst ≤ |C|− 1 (see Proposition 1 and step
[5] in Figure 2).

If the reduced coefficient of the unit is not zero, or
if it is zero but there are at least two other units in
the cover extension set with non-zero coefficients, then
PA,C,t is formulated and solved [18]. If PA,C,t ≤ |C| −
1 [19], then a new extended cover inequality of form∑

s∈QCt
αstxst +

∑
j∈C xjt ≤ |C| − 1 (where αst ∈ ACt)

is built and added to the integer program [20]. The
branch that lead to this constraint is fathomed [17]. If
PA,C,t > |C| − 1 then either the coefficient of the unit is

further reduced by one [12] or a new unit from set QCt is
selected for coefficient reduction [13]. The process starts
all over again.

Now, going back to step [17] in Figure 2; each time
a branch is fathomed, the algorithm backtracks to the
parent node. In other words, the coefficient that has
been reduced by one to give rise to the branch that was
fathomed is recovered (steps 1 and 2 within [17]). Next,
the algorithm checks if all the branches from the parent
node have been evaluated [21]. If not, a new unit is
selected for coefficient-reduction and the process loops
back to step [12]. Otherwise, it is tested if the current
node is the root node [22]. If it is, no more extended
cover inequalities can be derived from minimal cover C
[23]. If the current node is not the root node, further
”backtracking” takes place in the branching tree. In
other words, if no more nodes can be derived and tested
from a given node, the algorithm reverts to the parent
node using a ”backtracking” array whose elements are
indexed by τq [17]. Array τq keeps track of the sequence
of coefficient reductions so that the algorithm can loop
back to the parent nodes once all branches below that
node have been explored. For example, an array of {τ1

=12, τ2 =23, τ3 =54, τ4 =54} represents a branching
path when the coefficient of unit 12 was reduced by one
first, then the coefficient of unit 23 was reduced by one
and, finally, the coefficient of unit 54 was reduced by
one, twice. In Figure 2., index p denotes the unit IDs in
set QCt.

Figure 3 illustrates a “branching tree” that can
be derived from the following coefficient set: ACt =
{α∗

1t = 2, α∗
2t = 2, α∗

3t = 1}. If the extended cover
inequality that can be derived from this ”root” node
is valid then it is added to the integer program; no
branching/coefficient-reduction is needed. Otherwise,
three new nodes are generated by reducing the coeffi-
cients of each unit by one, one at a time: {1,2,1}, {2,1,1}
and {2,2,0}. Compatibility is then tested at each of these
nodes and further branching/coefficient-reduction is per-
formed as needed. As the coefficient reduction is done
sequentially from unit 1 to unit 3, as in Figure 3, some
redundant nodes might arise that need to be eliminated.
For example, branching on {2,2,0} would lead to nodes
that had already been evaluated earlier in the process.

After the Compatibility Algorithm is complete, an-
other minimal cover is selected from C and the strength-
ening process starts all over again [1]. The Strengthen-
ing Algorithm terminates when no more minimal covers
remain in C [26].

The Strengthening Algorithm can generate a num-
ber of redundant (dominated) constraints. As an exam-
ple, the extended cover constraint that can be derived
from terminal node {0,2,0} is dominated by the con-
straint that can be derived from node {1,2,0}. We leave
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Figure 3: An example of the coefficient reduction procedure.

eliminating these redundancies to the solver’s prepro-
cessing algorithms.

Finally, observe that if the Path Algorithm and the
strengthening procedure are applied to a URM prob-
lem, the resulting extended covers would be maximal
cliques. As the combined area of any two adjacent units
in the URM exceeds the cut limit, the Path Algorithm
would yield only 2-way minimal covers; i.e., pairwise ad-
jacency constraints. Now, for any minimal cover C (i.e.,
any pair of adjacent units) in a URM, a unit that is a
member of the cover extension set QCt must be adjacent
to both units in cover C (Proposition 1). Additionally,
any two or more units in QCt can only be compatible,
or, equivalently, can only be included jointly in the ex-
tended cover, if they are mutually adjacent. If not, they
could be cut simultaneously, which would make the ex-
tended cover constraint invalid since in a URM the right-
hand-sides of the original pair-wise cover constraints are
always 1. Thus, for URM problems, all the units in ex-
tended covers formed by compatible subsets of QCt and
the units in the original minimal cover must be mutu-
ally adjacent. In other words, they form cliques. More-
over, if the Strengthening Algorithm is set to eliminate
all dominated constraints (we left this procedure to the
solver’s built-in preprocessing routines), the remaining
cliques will be maximal. This is an important observa-
tion for three reasons. First, it shows that the extended
cover inequalities proposed here for the ARM generalize
the concept of the maximal clique constraints in URM
problems. Second, it implies that the Strengthening Al-
gorithm could potentially be used to generate maximal
clique constraints for URM problems, although exist-
ing algorithms for this special case likely are more effi-
cient. Third, as the maximal clique formulation has been
identified as a tight formulation of the maximum weight
stable set problem, it is reasonable to expect that the

proposed Strengthening Algorithm would yield a com-
putationally advantageous formulation of the ARM as
well.

4 Test problems

The computational efficiency of the strengthened
covers was tested on sixty hypothetical and seven real
forest planning problems. Thirty of the hypothetical
forests had 300 units and thirty had 500 units. The
real forests consisted of 32, 71, 89, 90, 1,019, 1,363 and
5,224 units. The hypothetical problems had one for-
est type and one site class, while the real problems had
one, four, five or six forest types and one, two, three or
four site classes. Forests in different forest types or site
classes exhibit different growth and yield patterns. The
initial age-class distribution of the hypothetical forests
mimics a typical Pennsylvania hardwood forest. The
hypothetical problems were generated in batches using
a program called MakeLand (McDill and Braze 2000).
MakeLand was instructed to randomly assign age-classes
to the polygons of each randomly generated forest map
in such a way so that the overall age-class distribution
would approximate the age-class distribution of an av-
erage Pennsylvania hardwood forest. This random age-
class assignment was done three times for each of twenty
maps resulting in the thirty 300-stand and thirty 500-
stand problems. Neighborhood adjacency (vertex de-
gree) was varied by changing the initial number of points
that MakeLand was instructed to use to construct the
polygons. The age-classes and yields of each unit in the
real problems were based on on-site measurements.

The planning horizon was 60 years for the hypothet-
ical models, and 25, 40 or 50 years for the real problems.
The length of the planning periods was 10 years for each
problem except El Dorado and Shulkell where it was 5
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years. The minimum rotation age was 60 for the hy-
pothetical, 80 for the four small real problems, and it
ranged from 20 to 100 years for NBCL5, depending on
the forest type. No minimum rotation age was specified
for El Dorado and Shulkell. The optimal rotation age,
based on maximizing the land expectation value (LEV),
was 80 years for the hypothetical, 50 years for the small
real problems and 90 years for NBCL5. The possible
prescriptions were to cut the management unit in pe-
riod 1, 2, 3, 4, 5, 6 (in the hypothetical forests) or not
at all. A maximum harvest opening size of 40 and 50
ha was imposed on the hypothetical and the real forests,
respectively. In NBCL5, the maximum opening size was
set to three different levels: 21, 30 and 40 ha. In El Do-
rado, 48.56, 60.70 and 72.84 ha was used and in Shulkell
40 and 60 ha was applied. All units were smaller than
the maximum harvest opening size. In the case of Kit-
taning4, FivePoints, PhyllisLeeper and BearTown, units
greater than 50 ha were delineated into smaller units by
a Bureau of Forestry employee using contour lines, roads,
trails, streams and shape. In NBCL5 and Shulkell, units
greater than 21 and 40 ha, respectively, were excluded
as we had no site-specific knowledge to make meaningful
delineations. In addition, we excluded those units from
NBCL5 that had no yield information. The average age
of the forests at the end of the planning horizon was
limited to be at least half of the minimum rotation age.

Table 1 summarizes the spatial characteristics of
each real problem, and each hypothetical problem batch.
In addition to the minimum, maximum and mean unit
sizes, the unit size distribution, the total forest area, as
well as the vertex degrees and the number of forest types,
site classes and planning periods are also listed to give
the reader an idea of how simple, or complex, the test
problems were.

Each problem was formulated in four different ways,
using (1) Goycoolea et al.’s (2005) maximal clique-based
Cluster Model, (2) McDill et al.’s (2002) path/cover con-
straints (a.k.a. the Cell Model), (3) Constantino et al.’s
(2008) Bucket Model, and (4) the strengthened covers
introduced in this paper. As for the path/cover and the
cluster enumerations, we used McDill et al.’s (2002) Path
and cluster algorithms for each problem instance, except
for NBCL5, El Dorado and Shulkell where we used Goy-
coolea et al.’s (2009) modified, more efficient version:
“Algorithm I”. Here, unlike in McDill et al.’s (2002),
the clusters and paths/covers are generated simultane-
ously within the same algorithm. The characteristics of
the resulting formulations; the path/cover-size distribu-
tion, the number of maximal cliques, feasible clusters,
0-1 variables, and the number of adjacency constraints;
are summarized in Table 2-3.

All pre-processing and model formulation tasks were
automated using Java and IBM-ILOG CPLEX v. 12.1

Concert Technology (2009) (4-thread, 64-bit, released in
2009) on a Power Edge 2950 server that had four Intel
Xeon 5160 central processing units at 3.00Gz frequency
and 16GB of random access memory. The operating
system was MS Windows Server 2003 R2, Standard x64
Edition with Service Pack 2 (2003). The strengthening
procedure was implemented in Visual Basic.Net (2005).
Every problem instance was solved on the Power Edge
2950 server with CPLEX 12.1. The relative MIP gap
tolerance parameter (optimality gap) was set to 5.e−04
(0.05%), and the working memory limit was set at 1 GB.
Default CPLEX settings were used for all other parame-
ters. CPLEX was instructed to terminate if the solution
time for a given problem reached 6 hours. We compared
the solution times needed to find the first integer feasi-
ble solution within the predefined 0.05% optimality gap.
If the desired optimality gap was not reached within 6
hours, than the achieved gaps were used as the bases of
comparison (Table 3). To better understand the results
regarding the hypothetical problems, we constructed a
series of 95% confidence intervals on the mean solution
times for each of the four methods (Fig. 4.).

5 Results and discussion

Table 4 reports the solution times and optimality
gaps for both the hypothetical and the real problems.
For BearTown and PhyllisLeeper, the solver was not
able to reach the target 0.05% optimality gap within
6 hours of runtime. In these cases, we report only the
achieved optimality gaps: with 0.1153% and 0.0507%,
the Strengthened Path performed the best in these two
particularly hard problems. Other than these two prob-
lems, it was NBCL5 at the 30 ha maximum harvest open-
ing size and El Dorado that that could not be solved to
the target gap within 6 hours of runtime. While the
Path, the Strengthened Path and the Cluster models all
solved these problems to the desired gap, the Bucket
Model could only achieve a 0.07% gap for NBCL5 and
a 0.08, 0.14 and 0.56% gap for El Dorado at 48.56, 60.7
and 72.84 ha opening sizes, respectively. Overall, in 5
out of the 12 real problem instances, the proposed model
was the most successful, preceded by the original Path
Formulation that came out ahead 6 times and followed
by the Cluster Formulation that lead to the shortest so-
lution time only once.

Of the 60 hypothetical problems, 23 times the
Strengthened Model, 21 times the Path Model, 9 times
the Bucket and 2 times the Cluster Model reached the
target gap within the least amount of time (Table 4).
While on average, the Strengthened Model was able to
reach the target gap for hypothetical problems faster
than the other models, this advantage was statistically
significant at the p=0.05 level only in comparison with
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Figure 4: Confidence Intervals for Mean Solution Times

the Cluster and the Bucket models (Fig. 4). The aver-
age solution time savings afforded by the Strengthened
Model relative to the Path Model were statistically in-
significant.

In Table 5, we report the objective function val-
ues for the linear programming relaxations and the best
integer solutions for each problem instance. The best
LP bounds are shown underlined. The root gaps, the
percentage gaps between the best integer solutions that
were found by the four models and the LP relaxations,
are also listed to give the reader and idea of the strength
of the formulations. The smaller the root gaps, i.e., the
closer the objective values of the LP relaxations to the
true optima, the fewer branches might be necessary in
the branch-and-bound algorithm to find a solution with
a desired optimality gap (c.f., Wolsey 1998). In 30 of
the 72 problem instances, the four models all provided
the same LP bounds (Table 5). The Cluster Model led
to strictly the lowest LP relaxations in 9 cases, while
the Strengthened Path Models achieved the same in 2
cases suggesting that the Cluster Model cannot be con-
sidered “tighter” than the new model. On the other
hand, the Path and the Bucket models never resulted in
strictly better LP bounds than the other 2 models. This
illustrates Goycoolea et al.’s (2009) and Martin et al.’s
(2011) theoretical findings that the Cluster Model pro-
vides a tighter approximation of the integral convex hull

of the ARM than the Path or the Bucket models. There
were 57 problems where the Path, the Cluster and the
Strengthened Path formulations all produced the same
LP bounds. In the remaining 15 cases, the Cluster and
the Strengthened Path were the best. Finally, the fact
that in 14 cases (19.4% of total) the Strengthened Model
led to better LP bounds than the Path Model confirms
the expected empirical benefits of Proposition 1.

It is important to discuss the implications of the
fact that the strengthening procedure itself has an as-
sociated computational cost. In our experiment, the
runtime of the procedure ranged from seconds for the
smaller problems (Kittaning4, FivePoints, PhyllisLeeper
and Beartown) to more than an hour for the 5,224 stand
NBCL5. It is clear that the computational effort must
be in line with the expected benefits in solution time
for this method to be worthwhile. In the case of the
exceptionally hard PhyllisLeeper for example, investing
an extra second in generating the stronger constraints
appears to be a reasonable choice given the additional
$1,924 that come from a better quality solution (Table
5). In the case of NBCL5 on the other hand, spending
an extra hour on the strengthening procedure is not in
line with the seconds it takes to solve this problem to
the same 0.05% optimality gap with either the Path or
the Strengthened Path approach. In sum, we recom-
mend the proposed strengthening procedure for small

mailto://toths@uw.edu
http://mcfns.com
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problems that are very hard to solve with other models.
Another point that needs to be made with respect

to the strengthening concept is that the spatial struc-
ture of a forest planning problem can have an impact
on the number of extension and lifting opportunities in
a path/cover-based formulation. The more cover con-
straints exist that can be strengthened in a problem, the
more likely it is that the procedure can lead to reduced
solution times. However, while many cover constraints
may be extended and lifted in some problems, none will
be possible in others. The average size of the manage-
ment units relative to the maximum harvest opening
size, as well as the average number of adjacent units per
unit (vertex degree) have an effect on the strengthening
potential of the proposed procedure. The smaller the av-
erage size of the units relative to the cut limit, the less
likely it is that the cover inequalities can be strength-
ened. This is because forests that have smaller units
relative to the maximum harvest opening size will give
rise to covers that comprise more units. Covers that
comprise more units are harder to strengthen because
the smaller units that are adjacent to the covers are less
likely to satisfy Proposition 1. This is the reason why
the amount by which the strengthened formulation re-
duced the LP bounds relative to those produced by the
Path formulation for NBCL5 diminishes as the harvest
size limit increases from 21 to 40 ha. The root gap is
0.0545% with the strengthened approach at the 21 ha
opening size vs. the 0.0852% with the original path, but
it is only 0.0636% at the 30ha level vs. the 0.0670%,
and it is 0.0725% vs. 0.0735% at the 40 ha level (Ta-
ble 5). In other words, it is no surprise that the extent
to which the root gaps are reduced by the strengthened
formulation becomes smaller and smaller as the harvest
opening size increases. Similarly, a higher vertex de-
gree is likely to increase the number of candidate stands
that are adjacent to more than one member of the cover.
Thus, lifting opportunities are more likely to occur when
there are more adjacencies. Clearly, a close inspection
of the spatial configuration of the management units in
the forest in question can be very helpful to decide if the
strengthening procedure should be employed or not.

6 Conclusions

In this article, we showed how the path/cover con-
straints, generated by McDill et al.’s (2002) Path Al-
gorithm for area-based forest planning models, can be
strengthened. We provided both theoretical and empiri-
cal evidence (see Table 5) that the proposed constraints
are indeed stronger than the original ones. We also
showed that the strengthened formulation can outper-
form the other models computationally in many cases.
As a caveat, however, we emphasize that there is a com-

putational cost associated with the strengthening pro-
cedure, which must be offset by solution timesavings
if the new model is to be used efficiently. A prelimi-
nary analysis of the spatial configuration of the man-
agement units in the landscape could help the analyst
determine whether it would likely be worthwhile to ap-
ply the strengthening procedure. Lastly, we mention
that there are many additional strategies that could be
followed to improve the use of the proposed concept in
practice. First, not all strengthened cover inequalities
might need to be generated, but only those that cut
off fractional solutions. This observation could lead to
a cutting plane algorithm where the strengthened cuts
are only created and applied if they have the potential
to cut off fractional solutions. Second, it was shown
that in certain cases stronger inequalities might exist
than those generated by the proposed algorithm. Find-
ing ways to generate these stronger cuts efficiently could
further reduce solution times. It is also important to
point out that we did not compare the proposed ap-
proaches with Crowe et al.’s (2003) ARM cliques or
Gunn and Richards’ (2005) stand-centered constraints.
It is possible that some combination of cover constraints,
strengthened cover constraints, ARM cliques, or stand-
centered constraints would provide superior computa-
tional results.

Finally, we also note that the computational ex-
periments presented in this paper are the most exten-
sive to date in the area-based adjacency literature. We
solved 60 hypothetical and 12 real instances including
both small and large problems, with planning horizons
of varying lengths, with varying vertex degrees and with
different forest types and age classes. While the com-
putational results are not conclusive with respect to the
real problems, our data should serve as good reference
point for readers who like to know what to expect from
these alternative models.
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