
ISSN 1946-7664.MCFNS 2012 AVAILABLE ONLINE AT HTTP://MCFNS.COM Submitted: Oct. 11, 2010
Vol. 4, Issue 1, pp. 16–26 Accepted: Aug. 23, 2011
Mathematical and Computational Published: Feb. 28, 2012
Forestry&Natural-ResourceSciences Last Correction:Aug. 23, 2011

OPTIMAL PARAMETER SETTINGS FOR SOLVING HARVEST

SCHEDULING MODELS WITH ADJACENCY CONSTRAINTS

Phillip J Manning
1
, Marc E McDill

2

1Northeast Land Management, LLC, Harrisburg, PA 17111 USA
2College of Agricultural Sciences, Penn State, University Park, PA 16802 USA

Abstract. Optimal parameter settings to improve the efficiency of solving harvest scheduling models
with adjacency constraints were examined using Ilog’s Cplex R© 11.2 optimizer tuning tool. A total of
160 randomly generated hypothetical forests were created with either 50 or 100 stands and four age-class
distributions. Mixed integer programming problems were formulated in Model I form with four different
adjacency constraint types, two Unit Restriction Model (URM) adjacency constraints (Pairwise and Max-
imal Clique) and two Area Restriction Model (ARM) formulations (Path and Generalized Management
Unit). A total of 640 problem sets—where a set is a common forest size, age-class distribution, and
adjacency constraint type—were tuned to determine optimal parameter settings and then were solved at
both the default and optimal settings. In general, mean solution time was less for a given problem set
using the optimal parameters compared to the default parameters. The results discussed provide a simple
approach to decrease the solution time of solving mixed integer forest planning problems with adjacency
constraints.

Keywords: Harvest scheduling, adjacency constraints, forest management, area restriction models,
unit restriction models.

1 Introduction

Forest management planning has become increas-
ingly complex over the last two decades due to grow-
ing sustainability concerns and non-timber objectives.
Optimization techniques have been used successfully
to schedule harvests since the 1960’s (Thompson et
al. 1973). Early models were typically formulated as
linear programming problems. Modern management
guidelines, however, often require spatial restrictions on
the size and proximity of harvest openings, commonly
called adjacency constraints, along with other spatial
constraints such as those related to wildlife habitat con-
servation. A common approach to handling adjacency
restrictions is to impose constraints that prevent adja-
cent stands from being harvested within a given time
period (McDill and Braze 2000). Such restrictions add
complexity to the task of finding optimal solutions be-
cause available harvest scheduling formulations that im-
pose them require binary decision variables, making the
harvest scheduling problem with spatial constraints an
integer or mixed integer programming (MIP) problem
(Crowe et al. 2003). These models are substantially
more difficult to solve than similar-sized harvest schedul-

ing models formulated as linear programming problems
(Williams 1993; McDill and Braze 2001).

Two broad types of adjacency constraints have been
discussed for incorporating spatial management require-
ments in harvest scheduling models, (i) the Unit Re-
striction Model (URM) and (ii) the Area Restriction
Model (ARM) (Murray 1999). The URM predefines
the boundaries of all management units and restricts
concurrent harvest on all adjacent units regardless of
their size (Murray 1999). A number of exact for-
mulation approaches have been proposed to solve this
model, including the branch and bound algorithm (BBA;
McDill and Braze 2001), column generation (Barahona
et al. 1992; Weintraub et al. 1994), and dynamic pro-
gramming (Hoganson and Borges 1998). In addition,
heuristic methods such as Tabu search (Murray and
Church 1995; Boston and Bettinger 1999) and simulated
annealing (O’Hare et al. 1989; Nelson and Brodie 1990;
Lockwood and Moore 1993; Murray and Church 1995;
Boston and Bettinger 1999) have been used. In contrast,
the ARM does not predefine the boundaries of harvest
blocks; instead, small management units may be com-
bined into larger harvest blocks as long as their com-
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bined area does not exceed a given maximum (Murray
1999). The ARM is a more complex problem than the
URM, but the added complexity can be worthwhile. For
instance, Murray and Weintraub (2002) noted that net
revenues can be improved through cluster forming, and
Richards and Gunn (2000) found that having predefined
units as in the URM may underestimate the potential
harvest flow across suboptimal units. Much of the litera-
ture related to solving the ARM problem has focused on
heuristic methods (Lockwood and Moore 1993; Barrett
et al. 1998; Richards and Gunn 2000; Boston and Bet-
tinger 2002; Caro et al. 2003) for solving these problems.
However, several exact MIP formulations of the ARM
problem have been proposed, including the Path formu-
lation (McDill et al. 2002), the Generalized Management
Unit (GMU, McDill et al. 2002) or Cluster Packing for-
mulation (Goycoolea et al. 2005), and the Bucket for-
mulation (Constantino et al. 2006). The heuristic meth-
ods discussed for both the URM and ARM problems are
good for finding near-optimal solutions for large complex
problems in a relatively small amount of time. Further-
more, exact formulations for some problems, for exam-
ple some habitat problems, have not been developed and
may be difficult, if not impossible to develop (e.g., Bet-
tinger et al. 1999). However, heuristic approaches typ-
ically cannot guarantee that the solution found is op-
timal or how close it is to being optimal (McDill and
Braze 2001). On the other hand, the BBA provides a
general method to obtain an exact solution to MIP prob-
lems (McDill and Braze 2001). In actuality, the BBA,
as implemented in most modern software, such as Ilog’s
Cplex§, includes heuristic algorithms in the solution pro-
cess. Hence, the key distinction of the BBA is that it
provides guaranteed bounds on the objective function
value of the final solution.

McDill and Braze (2001) examined the BBA as a
means to solve harvest scheduling models with URM
type adjacency constraints. They found that moderately
large problems with immature or balanced age-class dis-
tributions could be solved to optimality on average in
7.6 to 17.4 min, respectively, while overmature and old-
growth forests took in excess of 4 hr to solve to opti-
mality (McDill and Braze 2001). They also discussed
the advantages of being able to use off-the-shelf soft-
ware packages such as Ilog’s Cplex§to solve forest plan-
ning problems using the BBA, including cost, flexibil-
ity, and continued improvement in software development
(McDill and Braze 2001). Crowe et al. (2003) extended
the work of McDill and Braze (2001) to harvest schedul-
ing models with ARM adjacency constraints. Crowe et
al. (2003) found that small to medium sized problems
could be solved to optimality or near optimality in a
reasonable time using the BBA. Both of these studies,
however, solved the harvest scheduling problems using

the default parameter settings, specifying only the de-
sired optimal tolerance gap. Little work has been done
to identify optimal parameter settings for solving URM
and ARM problems with the BBA. Crowe et al. (2003)
expressed the need for further research to identify the
influence various BBA parameters have on the efficiency
of solving ARM problems and, for that matter, all spa-
tially explicit forest planning problems.

This article examines some of the parameters associ-
ated with the BBA and evaluates their settings using
the performance tuning tool in Cplex§. Our objectives
are (i) to provide a review of topics associated with pa-
rameters of the performance tuning tool, (ii) to identify
parameter settings that will improve solution time for
spatially explicit forest planning problems with different
sizes, age-class distributions, and adjacency constraints,
and (iii) to assess the role of the parameter tuner in
solving more complex forest planning problems.

2 Parameter Tuning

Various parameter settings are available when solv-
ing MIP problems using the BBA in Cplex§. The per-
formance of the solver can depend significantly on the
values of these parameters. The default setting for the
majority of these parameters is that they are set au-
tomatically by the optimizer based on an analysis of
the problem. To be able to understand how changes
in parameters affect solving MIP problems in Cplex§,
one must have a general understanding of the BBA.
Cplex§implements the BBA by solving a series of sub-
problems that are relaxations of the MIP where some or
all of the binary variables are treated as continuous vari-
ables bounded between zero and one. Each relaxation
is a node of the branch and bound tree (ILOG 2008).
The root of the tree is the continuous relaxation of the
original MIP problem (ILOG 2008). If the solution to
the relaxation at a given node has one or more fractional
variables, cuts may be implemented to eliminate areas
of the feasible region of the relaxation that contain the
fractional solutions without eliminating any feasible in-
teger solutions (ILOG 2008). If fractional variables exist
after applying the cuts, the algorithm branches on a re-
maining fractional integer variable to generate two new
subproblems with the branching variable fixed at either
zero or one (ILOG 2008). These subproblems may re-
sult in an all-integer solution, an infeasible solution, or
another fractional solution. If an all-integer solution is
found that is superior to the current best all-integer so-
lution, it establishes a new primal bound. If another
fractional solution is produced that is superior to the
current primal bound, the process is repeated. If a frac-
tional solution is produced that is inferior to the current
primal bound, the branch is fathomed from the tree –
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i.e., not considered further. McDill and Braze (2001)
provide a more detailed explanation of the BBA along
with an example of its implementation. The following
sections describe parameters that have notable effects on
solving MIP problems with Cplex§.

2.1 Preprocessing Preprocessing is completed auto-
matically by the Cplex§presolver and aggregator one or
more times to strengthen the initial linear relaxation and
to decrease the overall size of the MIP (ILOG 2008).
Bound strengthening tightens the bounds on variables,
possibly leading to fixing some variables and thus re-
moving them from consideration during the BBA. This
procedure can take a long time. However, the reduction
is usually beneficial to solving the problem (ILOG 2008).
This process can be controlled using the set preprocess-
ing boundstrength parameter. The default setting of
this parameter is -1, which means that the preprocessor
automatically determines whether or not to apply bound
strengthening. Bound strengthening can be turned off
with a setting of 0 and applied with a setting of 1. Con-
straint tightening – i.e., the reduction of constraint coef-
ficients – is handled by the set preprocessing coeffreduce
parameter. This parameter determines how coefficient
reduction is applied; where a value of 2 (default) re-
duces all potential coefficients, 1 reduces only integral
coefficients, and 0 applies no reductions (ILOG 2008).
Coefficient reduction usually strengthens the continu-
ous relaxation and reduces the number of nodes in the
BBA tree, although sometimes it increases the amount
of time needed to solve the linear relaxation at each node
thus offsetting the benefit of fewer nodes. In addition,
the set preprocessing relax control determines whether
an LP pre-solve is applied to the root relaxation of the
MIP problem (ILOG 2008). The LP pre-solve on the re-
laxation can produce additional reductions in the MIP
beyond the other preprocessing functions. Finally, the
set preprocessing numpass and set preprocessing aggre-
gator limit the number of analysis passes the presolver
and aggregator make, respectively.

2.2 Probing Probing examines the implications of
fixing each binary variable to zero or one prior to ac-
tually fixing any variables (ILOG 2008). Probing occurs
after preprocessing but before the BBA is implemented
(ILOG 2008). According to ILOG (2008), the probing
feature can help in solving some problems but it is costly
due to the time it takes to probe, which may or may not
pay off with shorter overall solution times. This param-
eter can be set with the set mip strategy probe i, where
i is the parameter value. The default value of zero auto-
matically determines the level of probing, positive values
set higher levels of probing, and a value of -1 turns off
probing (ILOG 2008).

2.3 Cuts A cut is a constraint that can be added to
the model to eliminate non-integer solutions that would
otherwise be feasible for the relaxation at a given node
(ILOG 2008). Adding cuts usually reduces the number
of branches needed to solve the MIP. Cuts occur more
frequently at the root node, but they can be added by
the optimizer at other nodes depending on the problem
(ILOG 2008). Cplex§generates cuts that are valid for all
subproblems (ILOG 2008). The types of cuts available
in Cplex §are described in Table 1. Under the default
setting (zero), the optimizer automatically determines
how often, if at all, to generate each class of cut. A
setting of -1 indicates that no cuts of that class should
be generated, while

settings of one or two generate cuts moderately and
aggressively, respectively (ILOG 2008). Clique, cover,
and disjunctive cuts permit a setting of three, which
specifies that the class of cut should be generated very
aggressively (ILOG 2008).

2.4 Heuristics Determining good, but not necessar-
ily optimal, feasible solutions quickly during the BBA
improves the primal bound and may decrease the time
required to find and prove that a solution is optimal or to
reach a specified optimality gap. Two heuristics can be
employed to find integer solutions at nodes during the
BBA. The first type is the node heuristic, which tries
to construct a feasible solution from the fractional solu-
tion at a node and is controlled by the set mip strategy
heuristicfreq parameter (ILOG 2008). Its default is to
dynamically determine how often to apply the heuris-
tic is (ILOG 2008). Any positive value of the parame-
ter specifies the frequency, in node count, to apply the
heuristic (ILOG 2008). For instance, a parameter value
of 20 would apply the heuristic at every 20th node during
optimization. The second type of heuristic available in
Cplex§is the Relaxation Induced Neighborhood Search
(RINS). This heuristic explores a neighborhood of the
current solution to try to find a new and improved so-
lution by formulating the neighborhood as a subMIP
(ILOG 2008). Two parameters are associated with the
RINS. The set mip strategy rinsheur controls how often
to invoke the RINS heuristic while the submipnodelim
parameter restricts the number of nodes to search in the
subMIP during the RINS (ILOG 2008).

2.5 Performance tuning tool The parameter tun-
ing tool available in Ilog’s Cplex§11.2 optimizer is a util-
ity to aid in improving the performance of solving MIP
problems (ILOG 2008). Performance refers to decreas-
ing the time it takes to solve a problem to optimality
or a specified optimality gap. Modern MIP solvers pro-
vide great flexibility due to the available parameters one
can change. However, the number of possible param-
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Table 1: Description of the types of cuts available in Cplex§.
Cut type Interactive opti-

mizer command
Description

Clique set mip cuts
cliques

Relationship between a group of binary variables such that at most one variable
can be positive in any integer feasible solution.

Cover set mip cuts cov-
ers

Constraint represents a knapsack constraint then there is a minimal cover asso-
ciated with it and a constraint can be constructed based on this condition.

Disjunctive set mip cuts dis-
junctive

Inequalities that represent valid feasible regions of the LP relaxations of the
subproblems but are not valid for the feasible region of the LP relaxation of the
MIP problem.

Flow cover set mip cuts
flowcovers

Generated from constraints with continuous variables where the continuous vari-
ables have variable upper bounds that are zero or positive depending on the
setting of the associated binary variable.

Flow path set mip cuts
path

Generated based on a set of constraints containing the continuous variables that
define a path structure in a network where the constraints are nodes and the
continuous variables are flows that will be on or off depending on the settings of
the binary variables.

Gomory set mip cuts go-
mory

Generated based on applying integer rounding on a pivot row in the optimal LP
tableau for a basic integer variable with a fractional solution.

GUB cover set mip cuts
gubcovers

A constraint for a set of binary variables whose sum of variables is less than
or equal to one. GUB cover cuts are stronger than ordinary cover cuts if the
variables in the GUB are also members of a knapsack constraint then the minimal
cover can be selected with the additional consideration that at most one member
of the GUB can be one in a solution.

Implied
bound

set mip cuts im-
plied

Cuts which reflect the relationship between binary variables and their implied
bounds on continuous variables.

MIR set mip cuts mir-
cut

Applied based on integer rounding on the coefficients of integer variables and
the right hand side of a constraint.

Zero-half set mip cuts ze-
rohalfcut

Generated based on the observation that when the left hand side of an inequality
consists of integer variables and coefficients then the right hand side can be
rounded down

eter combinations is large. For instance, consider five
parameters in Cplex§, four parameters with three values
each and two parameters with four values each produc-
ing 1,296 possible combinations, far too many to manu-
ally examine and test every possible combination. The
performance tuning tool provides a method to system-
atically examine the parameters and determine the best
settings for the given problem or set of problems. The
tool will not, however, correct models that suffer from
instability or insufficient memory but will discern perfor-
mance issues and suggest a suite of parameter settings
that lead to faster solution times (ILOG 2008). The
tool accomplishes this through a two-phase process. The
first phase is to solve the problem, or set of problems,
at the default parameter settings. In the second phase,
the tuning tool performs several optimizations at various
parameter settings to determine which settings are ap-
propriate for the given problem to improve performance.
The remaining sections of this article assess the ability

of the tuning tool to improve the efficiency of solving
spatially explicit forest planning problems.

3 Model Formulation

A total of 160 random hypothetical forests were
created with the MakeLand program (McDill and
Braze 2000). MakeLand creates a set of random, con-
tiguous polygons (stands) and randomly assigns an age-
class to each polygon based on a target age-class distri-
bution (McDill and Braze 2000). For this study, forests
were created with 50 (Figure 1) and 100 (Figure 2) poly-
gons to represent small and large forests. Each stand
is assigned a stand number and an initial age-class as
shown in Figures 1 and 2. The average polygon size was
20 ha. Thus the 50- and 100-stand forests have total
areas of 1000 and 2000 ha, respectively. The stands in
these forests all have the same forest type and site qual-
ity; they differ only in terms of their age. McDill and
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Braze (2000) and Crowe et al. (2003) found that the
age-class distribution of a forest is a major factor in de-
termining how difficult harvest scheduling models with
adjacency constraints are to solve. Following McDill and
Braze (2000), four different initial age-class distributions
were used in creating the forests for this study. The ini-
tial age-class distributions specify target proportions of
the total forest area in each age class representing 1)
immature, 2) regulated, 3) mature, and 4) old-growth
structures (Table 2). The actual age-class distributions
for individual forests can vary slightly from the distribu-
tions in Table 2 since an entire stand must be assigned
to one age-class.

Table 2: Target distribution of area by age-class for the
four initial age-class distributions.

Percent of total area by age class
Age
class

Immature Regulated Mature Old-
growth

1-20 35 25 10 —
21-40 30 25 15 —
41-60 20 25 20 —
61-80 15 25 25 —
81-100 — — 30 100

Table 3: Model parameters associated with each formu-
lated forest planning problem.

Parameter Value

Number of planning periods 5 periods (100 yrs)
Minimum rotation 4 periods (80 yrs)
Discount rate 4.00%
Regeneration costs $391.51/ha
Timber sale costs $239.25/ha
Upper bound on harvest in-
creases

10%

Lower bound on harvest de-
creases

1%

Wood price $105.15/m3

Minimum average ending age 40 yrs
Maximum harvest opening size 50 ha
Minimum age difference for
stands harvested together

2 periods (40 yrs)

Problems were formulated using the following Model
I structure (Johnson and Scheurman 1977) and model

parameters given in Table 3:

MaxZ =
M∑

m=1

T∑
t=1

cmt · Am · Xmt (1)

Subject to

T∑
t=0

Xmt ≤ 1for m = 1, 2,...,M (2)

M∑
m=1

vmt · Am ·Xmt − Ht = 0for t = 1, 2,...T () (3)

bl,tHt − Ht+1 ≤ 0for t = 1, 2,...T – 1 (4)

−bh,tHt + Ht+1 ≤ 0for t = 1, 2,...T – 1 (5)

M∑
m=1

T∑
t=1

(
AgeT

mt − Age
T
)

Am · Xmt ≥ 0 (6)

Xmt ∈ {0, 1} for m = 1, 2,...,M and for t = 1, 2,...T
(7)

where Xmt = a binary variable whose value is 1 if man-
agement unit m is selected to be harvested in period t
for t = 1, 2,...T; when t = 0, the value of the binary
variable is 1 if management unit m is not harvested at
all during the planning horizon,

M = the number of management units in the forest,
T = the number of periods in the planning horizon,
cmt = the discounted net revenue per hectare if man-

agement unit m is harvested in period t,
Am = the area of management unit m in hectares,
vmt = the sawtimber volume in m3 per hectare har-

vested from management unit m if it is harvested in
period t,

Ht = the total sawtimber volume in m3 harvested in
period t,

bl,t = a lower bound on decreases in the harvest level
between periods t and t + 1,

bh,t = an upper bound on increases in the harvest level
between periods t and t + 1,

AgeT
mt = the age of management unit m at the end of

the planning horizon if it is harvested in period t, and
Age

T
= the target average age of the forest at the end

of the planning horizon.
The objective function (1) maximizes the discounted

net revenue for the forest across the planning horizon.
Logical constraints (2) require that a management unit
be assigned to at most one prescription, including a do-
nothing prescription. Constraints (3) are harvest ac-
counting constraints. These constraints sum up the har-
vest volume for each period and assign it to the harvest
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Figure 1: Example 50-stand hypothetical forest where the polygon labels in each stand represent the unit id and
initial age-class.

Figure 2: Example 100-stand hypothetical forest where the polygon labels in each stand represent the unit id and
initial age-class.
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accounting variables (Ht). Constraint sets (4) and (5)
impose harvest flow restrictions. The ending age con-
straint (6) requires the average age of the forest at the
end of the planning horizon be at least Age

T
to prevent

the model from over-harvesting the forest. Finally, con-
straint (7) indentifies the management unit treatment
variables as binary.

Four different adjacency constraint types were used in
formulating the harvest scheduling models: two URM
adjacency constraints (Pairwise and Maximal Clique)
and two ARM adjacency formulations (Path and Gener-
alized Management Unit). Pairwise constraints require
a single constraint for each pair of adjacent stands for
each period (McDill and Braze 2000). Maximal Clique
adjacency constraints require a single constraint for each
group of mutually adjacent management units rather
than each pair (McDill and Braze 2000). The two URM
adjacency constraints were formulated as follows:

∑
m∈Ci

Xmt ≤ 1for all Cj and t = 1, 2,...T (8)

where Cj equals the set of indexes corresponding to the
jth pair of adjacent management units for the Pairwise
adjacency constraints or the jthset of mutually adjacent
management units for the Maximal Clique adjacency
constraints (McDill et al. 2002).

Path adjacency constraints and the Generalized Man-
agement Unit (GMU) formulation are ARM models that
impose only the adjacency restrictions that are needed to
preclude harvest openings that would exceed some max-
imum harvest area (McDill et al. 2002). The maximum
harvest area used in this research was 50 ha (Table 3).
Path adjacency constraints are based on contiguous sets
of management units whose areas minimally exceed the
maximum harvest area so that if any management unit
is removed from the set the maximum harvest area con-
straint will be satisfied. These sets were called “paths”
by (McDill et al. 2002). The constraints are formulated
as follows:

∑
U∈Pi

XUt ≤ nPi − 1∀Pi and t = 1, 2, ...T (9)

where nPi is the number of management units in path i
and Piis the set of indexes corresponding to the man-
agement units in path i (McDill et al. 2002). Goycoolea
et al. (2009) proposed several ways to tighten the Path
constraint formulation and an alternative, more efficient
algorithm to construct the clusters. However, in this
research the original Path algorithm was used and the
constraints where not tightened.

The GMU formulation creates variables for contiguous
combinations of management units whose combined area
does not exceed the maximum allowable harvest area.

A maximum age difference among these groups of con-
tiguous stands of two periods was used in this research
(McDill et al. 2002, Table 3). These groups of manage-
ment units are referred to as Generalized Management
Units in McDill et al. (2002). In the GMU formulation,
constraint set (2) is replaced by the following:

∑
u∈Gm

T∑
t=0

Xut ≤ 1for m = 1, 2,...Mo (10)

where Mo is the complete set of original management
units and Gm is the subset of management units in M
(which includes both Mo and the GMU’s) that includes
original management unit m (McDill et al. 2002). Also,
constraint sets (8) must be included as either Pairwise or
Maximal Clique adjacency constraints to complete the
ARM using the GMU approach (McDill et al. 2002).

With 160 forests and four adjacency formulations,
there were 640 problem instances. The problems were
solved and tuned as sets of 20, where a set is defined
as a given forest size, initial age-class distribution, and
adjacency formulation type. The problem sets were first
solved using the Cplex§11.2 interactive optimizer’s de-
fault parameters to a gap of 0.1% and with node files
stored on the hard drive. Problems sets were tuned with
the gap and node file parameters fixed, and then solved
again with the suggested parameter settings from the
tuning tool. The average solution time was calculated
for each problem set using the default and tuned param-
eter settings. One-tailed paired t-tests were conducted
using R 2.7.1 (R Development Core Team 2008) to iden-
tify significant differences (α = 0.05) between the mean
solution time with the default and tuned parameter set-
tings. The Anderson-Darling test for normality was used
to assess the assumption of normality with small sam-
ples. P-values were greater than 0.05 for the mean differ-
ences in each problem set thus failing to reject the null
hypothesis that the differences follow a normal distribu-
tion. It would be desirable to have a single optimal pa-
rameter set that would work well for all spatially-explicit
forest planning models. To see if this was possible, three
problems from each set were randomly selected to create
a mixed problem set with 96 problems. These problems
were solved, tuned, and resolved using the suggested pa-
rameter settings. All work was done on a computer with
an Intel§Xeon 3.73 GHz dual processor with 3.0 giga-
bytes of RAM.

4 Results

The results from the 50-stand and 100-stand forest
problem sets are presented in Tables 4 and 5. With few
exceptions, the mean solution times were smaller when
the problem sets were solved with the suggested parame-
ter settings from the performance tuning tool than with
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Table 4: Results for the 50-stand forest problem sets.

Constraint type Default parameter Tune parameter Tuning t-stat p-value
mean sol. time (sec)∗ mean sol. time (sec)∗ time (sec)

Immature forests
Pairwise 0.8 (0.12) 0.7 (0.07) 54.4 0.736 0.235
Maximal Clique 0.6 (0.07) 0.5 (0.08) 46.7 1.233 0.116
Path 1.2 (0.25) 0.9 (0.11) 71.2 1.291 0.106
GMU 3.3 (0.91) 1.7 (0.27) 1,059.0 2.165 0.022

Regulated forests
Pairwise 2.3 (0.99) 1.0 (0.33) 598.4 1.496 0.076
Maximal Clique 1.3 (0.28) 1.3 (0.64) 561.2 -0.110 0.450
Path 3.7 (1.51) 1.8 (0.42) 995.7 1.510 0.074
GMU 33.8 (17.73) 12.0 (3.61) 7,363.5 1.292 0.110

Mature forests
Pairwise 231.7 (65.32) 214.3 (77.15) 103,830.1 0.393 0.349
Maximal Clique 169.5 (35.40) 215.6 (79.35) 91,060.4 -0.673 0.255
Path 1,238.3 (651.44) 340.3 (189.76) 254,943.5 1.478 0.078
GMU 1,335.1 (440.38) 1,201.8 (384.70) 426,756.3 1.088 0.145

Old Growth forests
Pairwise 806.2 (180.10) 231.6 (61.96) 194,482.7 3.120 0.003
Maximal Clique 554.1 (101.61) 152.1 (29.04) 147,728.4 3.604 0.001
Path 317.0 (54.60) 66.8 (20.87) 77,030.7 4.617 0.000
GMU 2,192.4 (288.90) 726.5 (180.11) 563,463.6 4.168 0.003
∗Standard error (SE) in parenthesis.

Table 5: Results for the 100-stand forest problem sets.

Constraint type Default parameter Tune parameter Tuning t-stat p-value
mean sol. time (sec)∗ mean sol. time (sec)∗ time (sec)

Immature forests
Pairwise 6.4 (1.67) 2.0 (0.46) 1,540.3 2.420 0.013
Maximal Clique 6.3 (1.53) 1.9 (0.43) 2,672.8 2.955 0.004
Path 2.6 (0.70) 1.9 (0.92) 741.9 0.589 0.281
GMU 13.5 (5.24) 2.7 (0.34) 2,851.0 2.039 0.028

Regulated forests
Pairwise 3.9 (1.40) 1.0 (0.20) 839.4 2.265 0.018
Maximal Clique 4.4 (2.57) 0.8 (0.20) 899.5 1.415 0.087
Path 2.1 (0.55) 4.3 (2.38) 923.6 -1.155 0.131
GMU 14.2 (5.84) 4.2 (1.35) 2,998.7 2.000 0.030

Mature forests
Pairwise 1,207.3 (275.27) 1,159.9 (553.71) 390,398.5 0.098 0.461
Maximal Clique 1,417.3 (484.00) 835.0 (315.30) 387,729.9 1.119 0.139
Path 112.6 (46.83) 14.5 (3.35) 17,644.5 2.101 0.025
GMU 6,150.0 (3,420.51) 447.5 (190.55) 214,619.0 1.711 0.052

Old Growth forests
Pairwise 112.2 (22.77) 32.2 (6.54) 29,086.8 3.213 0.002
Maximal Clique 76.2 (17.08) 31.0 (4.32) 25,790.5 2.452 0.012
Path 53.3 (11.64) 18.7 (2.61) 15,308.5 2.679 0.007
GMU 1,327.4 (199.47) 172.1 (34.72) 238,726.5 5.870 0.000
∗Standard error (SE) in parenthesis.
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the default parameter settings. Exceptions were regu-
lated and mature forest problems formulated with Max-
imal Clique adjacency constraints for the 50-stand prob-
lems and the regulated forest problems with Path adja-
cency constraints for the 100-stand problems. However,
for the 50-stand problems, these decreases in mean solu-
tion time were only statistically significant for immature
forests with GMU adjacency constraints and old-growth
forests (Table 4). On the other hand, the differences
were statistically significant for 10 of the 16 large forest
problem sets (Table 5). Overall, using tuned parame-
ters reduced solution times by an average of 39% for the
50-stand problems and 55% for the 100-stand problems.

Tables 4 and 5 also show the time it took the perfor-
mance tuning tool in Cplex§to determine the optimal pa-
rameter settings for each problem set. Tuning times were
almost perfectly correlated with solution times, which
were, as expected, greater for mature and old-growth
forest problem sets compared to the immature and reg-
ulated forest sets (Table 4 and Table 5). Fifty-stand
old-growth forests with GMU adjacency constraints took
the longest time to tune among the problem sets at over
156.5 hrs (Table 4). This reflects the somewhat surpris-
ing result that for the old-growth forests, the 50-stand
problems took two to seven times as long to solve com-
pared with the 100-stand problems.

The most frequent parameter settings resulting from
tuning the problem sets are shown in Table 6.

Table 6: Most frequent recommended parameter settings
for Cplex§among all problem sets from the performance
tuning sessions.

Parameter name Recommended
value

Occurrence
(Number of
problem sets)

mip cuts flowcovers 1 20
mip cuts mircut 1 20
mip limits cutpasses 1 9
mip strategy probe -1 10
mip strategy heuris-
ticfreq

50 17

mip strategy vari-
ableselect

4 19

The mean solution time for solving a randomly se-
lected mixed set of 96 problems with the default param-
eters was 255.5 (SE = 69.9) seconds. In contrast, the
mean solution time using the tuned parameter settings
was 144.0 (SE = 46.1) seconds. This 44% reduction in
mean solution time was significant (p-value = 0.048) at
the 5% level. The tuning time for the 96 problems was

604,128 seconds. The recommended parameter settings
from tuning this set included only mip limits cutsfactor
30 and mip strategy rinsheur 100.

The solutions obtained for a given similar problem
(forest size and age-class) varied among adjacency con-
straint types. As one would expect, objective func-
tion values, solved to the specified 0.1% gap, increased
when problems were formulated with the ARM adja-
cency constraint types compared to the URM adjacency
constraint types. Sometimes the difference was substan-
tial, especially with forests with mixed age-class distri-
butions. For example, a 50-stand immature forest for-
mulated with Maximal Clique adjacency constraints had
an objective function value of $183,025.95while the same
problem formulated with Path adjacency constraints
had an objective function value of $227,049.86. Another
example was an overmature 100-stand forest, which had
an objective function value of $774,101.31 with Pairwise
adjacency constraints compared to $781,287.89 when
formulated with GMU constraints. These results were
not observed, however, with forests with an initial old-
growth age-class distribution. These problems had simi-
lar objective values among all adjacency constraint types
with between $5.00-$400.00 differences in objective val-
ues and no clear pattern between URM and ARM formu-
lations. Tuning resulted in no clear pattern in objective
values of problems solved with the default and tuned
parameters.

5 Discussion

This article addresses an approach to improving the
efficiency of solving harvest scheduling models with ad-
jacency constraints using the BBA. The mean solution
times for sets of similarly formulated forest planning
problems were reduced when the problems were solved
with the recommended parameter settings from the tun-
ing tool compared with the default parameter settings
in Ilog’s Cplex§11.2 optimizer. Exceptions where the
mean solution time was not decreased by tuning the pa-
rameter settings occurred in the 50-stand regulated and
mature forests with maximal clique constraints and 100
stand regulated forests with path constraints. The mean
solution time was significantly lower using the tuned pa-
rameter settings compared to the default settings for
most sets of formulated problems. Specifcally, solution
time reductions were significant for problem sets with
50 and 100-stand forests with old-growth age-class dis-
tributions across all adjacency constraint formulations.
Certain parameters were recommended from the tuning
tool more frequently than others, although they were not
consistent among problem sets (Table 6). The majority
related to how cuts are performed during the BBA. Mod-
erately applying cuts, specifically flow covers and MIR

mailto://phil@nelandmgmt.com
http://mcfns.com


Manning and McDill (2012)/Math.Comput. For.Nat.-Res. Sci. Vol. 4, Issue 1, pp. 16–26/http://mcfns.com 25

cuts, and limiting the number of cutting plane passes
were often beneficial in improving solution time. Also,
probing on variables prior to branching was typically not
recommended, suggesting that an investment in probing
does not produce gains in solution time for these prob-
lems. The tuning tool also suggested that performing
the node heuristic at short intervals, every 3rd node,
particularly on mature and old-growth forests, reduces
the solution time for these types of forests with Cplex§.
However, solving the large subset of problems suggested
that applying the RINS heuristic at a larger interval was
a more reliable strategy for a variety of MIP forest plan-
ning problems. Ultimately, this suggests that some kind
of periodic heuristic has a positive effect on improving
the efficiency of MIP forest planning problems.

For forests with immature, regulated and overmature
age-class distributions, substantial objective function
value increases were observed when forest planning prob-
lems were formulated with ARM adjacency constraints
as compared to URM adjacency constraints. Similar
results were shown in McDill et al. (2002). However,
the old-growth forest formulations did not exhibit the
same pattern as the other age-class distributions. This
is not surprising since in these forests all stands have the
same initial age class; the model is more-or-less indiffer-
ent about which stands are harvested in a given period,
so there is little benefit to clustering stands into larger
harvest blocks. This is a somewhat artificial result, since
in actual old-growth forests, there will be heterogeneity
between stands that likely would lead to gains from us-
ing an ARM approach rather than a URM approach.

This research illustrates three key findings. The first
is that changes in parameter settings in off-the-shelf op-
timizers can potentially have a significant effect on the
time it takes to solve harvest scheduling models with
adjacency constraints. Prior to this work, little research
has focused on exploring these parameters and analyz-
ing ways to determine optimal settings for given problem
types. Second, tuning is more costly in terms of time for
harder problems, but the pay-off is also generally larger
for these problems. Problem sets that are relatively easy
to solve, e.g., those for smaller forests with younger age-
class distributions, generally take less than an hour to
tune, but they are easy to solve in any case, so there
is little gain from tuning. Conversely, harder problems
required many hours, if not days, to tune. But the gains
from tuning tend to be more significant with harder
problems. For instance, the gains from tuning were more
frequently significant for the larger forest problems than
for the smaller forests, and they were always highly sig-
nificant (at least at the 0.001 level) for all the old-growth
problems, regardless of forest size. In addition, the re-
sults here confirm that tuning takes at least 6-8 times
longer, as reported by Ilog (ILOG 2008), than solving

a given problem and in most cases substantially longer.
On average, our problems took over 200 times as long
to tune as it did to solve one problem. This time invest-
ment is realized, however, in significantly lower solution
times using the suggested parameter settings. Thus, the
investment in tuning solution parameters is only likely
to be worthwhile when similar problems will be solved
many times. The third key finding is that the suggested
parameters associated with a given problem type result-
ing from the tuning utility are specific to certain types
of problems. This is important practically because each
type of problem, or sets of similar problems, would have
to be tuned separately to determine the optimal param-
eters.

In conclusion, this research provides insight into the
value of determining the optimal parameter settings for
specific types of harvest scheduling problem with adja-
cency constraints. Even though this work was based on
relatively simple hypothetical forests, one would expect
similar results with real forests based on similar age-class
distributions and size.
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