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Abstract. Forest modeling applications that cover large geographic areas can benefit from the use of
widely-held knowledge about relationships between forest attributes and topographic variables. A notewor-
thy example involves the coupling of field survey data from the Forest Inventory Analysis (FIA) program
of USDA Forest Service with digital elevation model (DEM) data in attempts to explain how topographic
characteristics influence forest productivity, vegetation composition, fire behavior, and other phenomena.
Because U.S. federal law prohibits the release of actual FIA plot coordinates, only altered coordinates are
released to the public. Here, terrain-based variables derived from a 10 m DEM using actual FIA plot
locations were compared to those from altered plot locations in a region of the Southern Appalachian
Mountains of western North Carolina, USA. Variables examined included simple terrain attributes such
as percent slope and azimuth of aspect, and composite attributes such as terrain shape index, flow
accumulation, slope position and forest site quality index. Results showed little correspondence between
variables from altered plot locations compared to those derived using actual locations. Further, FIA field
measurements of percent slope and azimuth of aspect showed little correspondence with corresponding
DEM-derived estimates from the actual plot coordinates. In order to effectively link FIA plot data with
DEM-derived topographic variables in mountainous regions like the Southern Appalachians, access to
actual plot coordinates or terrain variables derived from them may be required.
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1 Introduction

Forest scientists have known for decades that strong
linkages exist between the topographic features of land-
scapes and forest stand attributes including productiv-
ity, species composition, fire behavior, and other phe-
nomena. Many efforts have attempted to quantify these
linkages to better model and predict forest productivity
for assessment and management (Bolstad et al. 2001;
Davis and Goetz 1990; Franklin 1995). The availability
of advanced spatial analysis software and consistent, reli-
able, national coverage of digital elevation model (DEM)
data has facilitated our ability to characterize and quan-
tify topographic conditions at locations where produc-
tivity or other forest attributes are measured. With re-
gard to forest characteristics across large geographic ar-
eas, it is advantageous to use broad-scale inventory data
coupled with DEM-derived topographic variables for de-
veloping models to estimate site productivity (Bolstad

et al. 1998; Deng et al. 2007; Iverson et al. 1997).
In conducting the national forest inventory of the

United States of America (USA), the Forest Inventory
Analysis (FIA) program of the USDA Forest Service
collects field plot data and information about forest re-
sources of the USA (Smith 2002). In compliance with
the U.S. Food Security Act of 1985 modified by the year
2000 Consolidated Appropriations Bill, publicly avail-
able FIA data do not include actual plot coordinates
(LaPoint 2005; McRoberts et al. 2005). Plot locations
are altered by adding a random error of less than 1.6
km to the locations of all plots and swapping the loca-
tions of a small proportion of similar plots (Guldin et
al. 2006; Lister et al. 2005). Terminology for perturbing
and swapping has been referred to differently in differ-
ent contexts (Coulston et al. 2006b; Lister et al. 2005).
We’ve adopted the terminology used by McRoberts et
al. (2005) in referring to the methods of perturbing and
swapping that the FIA program uses to alter plot co-

Copyright c© 2011 Publisher of the Mathematical and Computational Forestry & Natural-Resource Sciences
Wang et al. (2011) (MCFNS 3(2):114–123). Manuscript Editor: Ron McRoberts

http://mcfns.com
mailto://wanghj@vt.edu
mailto://prisley@vt.edu
mailto://pradtke@vt.edu
mailto://jcoulston@fs.fed.us
http://frec.vt.edu/
http://mcfns.com
mailto://wanghj@vt.edu
mailto://rmcroberts@fs.fed.us


Wang et al. (2011)/Math.Comput. For.Nat.-Res. Sci. Vol. 3, Issue 2, pp. 114–123/http://mcfns.com 115

ordinates prior to releasing them to the public domain.
Further, we refer to perturbed and swapped plot loca-
tions as “altered” in contrast with the unaltered posi-
tions which we consider to be “actual.”

While aimed at balancing landowner privacy with
data users’ needs to link spatial information to FIA field
data, the effects of altering coordinates may be signifi-
cant when public-domain plot locations are used to pre-
dict terrain-based attributes. McRoberts et al. (2005)
suggested that effects of using altered plot locations were
non-negligible when forested areas of interest were less
than 321,700 ha. Coulston et al. (2006a; 2006b) showed
that perturbed and swapped coordinates were adequate
for predicting plot attributes at coarse spatial resolu-
tions when linking to ancillary geospatial data, but not
necessarily at fine resolutions. They concluded that pre-
dictions of forest-related attributes at fine spatial scales
using altered plot locations may be inaccurate.

Raster grid sizes on the order of 10 m (10 m × 10
m) to 30 m (30 m × 30 m) are commonly adopted
in many applications that assign DEM-derived ter-
rain attributes to field plot data. Such grid sizes are
primarily based on DEM data sets readily available
from public sources. Fine resolution (≤ 30 m) data
may be warranted in landscape-level modeling appli-
cations because terrain-based variation is likely under-
estimated using low-resolution terrain data (Bolstad et
al. 1998). Topographic variables derived from DEMs
have been applied to terrain-based estimation proce-
dures of forest site productivity, accounting for slope,
aspect, and water-movement relevant variables such as
terrain shape, downhill flow accumulation, and slope
position (Iverson et al. 1997; McNab 1993; Meiners et
al. 1984; Stage 1976). When DEM-derived topographic
variables are paired with productivity measures observed
on field plots, a concern arises that altered plot coordi-
nates may cause substantially poorer model performance
(Coulston et al. 2006b).

Effects of topographic variables on forest productivity
in the Southern Appalachian Mountains of the USA have
been known for decades (McNab 1993; Whittaker 1966).
Because of the strength of relationships between topog-
raphy and productivity in the Southern Appalachian
Mountains, the region provides an ideal setting for an
assessment of the effects of altering plot locations on
geospatial modeling. Previous work has identified el-
evation and/or terrain shape as main determinants of
basal area and forest composition (Bolstad et al. 1998).
Aspect and slope position – closely related to differ-
ences in microclimate, soil moisture, and soil depth –
are significantly associated with site quality for upland
oaks (Carmean 1970). Tree height is known to be corre-
lated with a terrain shape index in southern Appalachian
deciduous forests (McNab 1989), as is leaf area index

to terrain position (Bolstad et al. 2001). Meiners et
al. (1984) developed and tested a model of productivity-
related soil properties based on simple terrain variables
including slope, aspect, and slope position.

The objective of this study was to quantify the mag-
nitudes of errors in forestry-related terrain-based model
predictions for FIA plot locations when altered coor-
dinates were used in place of actual ones. The goals
included the examination of several simple terrain vari-
ables including slope and aspect, along with some model-
based attributes including the forest site quality index
(FSQI) of Meiners et al. (1984). A further goal involved
the assessment of the potential for interchanging FIA
field-based terrain measurements with DEM-derived es-
timates. Favorable comparison of field measurements
with DEM-derived values from actual plot locations was
seen as a potential means to overcome any limitations of
working with the same attributes derived from publicly
available altered plot locations.

2 Methods

2.1 Study Area This study was conducted using
data from the FIA survey area that covers the mountain-
ous region of western North Carolina, USA (Figure 1).
This area comprises 21 counties covering approximately
17,870 km2. Most of the study area is in the Blue Ridge
physiographic province of the Southern Appalachian
Mountains (Fenneman and Johnson 1946). Elevations
in the study area range from 266 to 2,033 m. Forests
are dominated by mixed upland hardwood communities,
with some oak-yellow poplar and oak-hickory communi-
ties (Forest Inventory and Analysis 2009). Chestnut oak
(Quercus prinus L.) occurs frequently across a broad
range of elevations and terrain shapes in the region,
and it is particularly dominant on xeric upland sites
such as ridges and upper slopes (Bolstad et al. 1998).
Mesophytic species such as yellow poplar (Liriodendron
tulipifera L.) typically dominate the valleys and moist
slopes (McNab 1993; Whittaker 1956). Northern red oak
(Quercus rubra L.), white oak (Q. Alba L.), and hickory
(Carya spp.) exhibit dominance across a wide range of
sites having moisture regimes that range between xeric
and mesic (Whittaker 1956).

2.2 FIA Data FIA field data from North Carolina
measured between 1998 and 2002 were obtained from
the USDA Forest Service through a memorandum of
understanding as part of the FIA Privacy Policy Study
Group. Both altered (perturbed and swapped) and ac-
tual coordinates for each plot were obtained to facilitate
the comparisons of interest. Data from a total of 1,022
field plots were used in the analysis. Due to a lack of
field-measured terrain data, a subset of 767 plots was
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Figure 1: Altered FIA plot locations in the Blue Ridge physiographic province of the Southern Appalachian Mountains
in western North Carolina, USA.

used to provide field measurements of percent slope and
azimuth of aspect.

2.3 Terrain Data Digital elevation data were ob-
tained from the US Geological Survey “seamless” web
site (http://seamless.usgs.gov, 9/1/2008) for 10 m grid
size DEM coverage of the study area. From this dataset,
additional terrain datasets were developed using spatial
analysis functions available in ArcGIS 9.2 software (En-
vironmental Systems Research Institute, Inc., Redlands,
California). Percent slope was computed using the Ar-
cGIS slope tool, which applies the Horn (1981) algorithm
using elevations at eight adjacent cells. Azimuth of as-
pect was calculated using the default ArcGIS algorithms.
To avoid difficulties in working with 0˚ – 360˚ azimuth
values, aspect was also transformed using a cosine trans-
formation that assigned values of 1 for due north, -1 for

due south, and 0 for due east and west.
Several composite terrain variables were calculated

from the DEM data, including terrain shape index,
flow accumulation, and slope position. These three
variables can be used to identify landforms such as
valleys, sideslopes, and ridges known to have effects
on forest composition and productivity in the South-
ern Appalachian Mountains. Terrain shape index (Mc-
Nab 1989) was computed as the difference between the
elevation at a cell and the average elevation of a circular
neighborhood with a radius of 37 m, corresponding to
the coverage area of a FIA field plot. Negative terrain
shape indices indicate convex upper slopes while positive
values indicate concave lower slopes. The flow accumu-
lation algorithm from ArcGIS was used to compute the
number of grid cells sending surface runoff downslope to
the cell being evaluated – assuming surface impermeabil-
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ity. Flow accumulation values are generally zero along
ridges and large near stream channels. Slope position
was computed as an index bounded between 0 (valley)
to 1 (ridge) by dividing the flow path distance from FIA
plot center downhill to the nearest stream by the flow
path distance from the nearest ridge to stream using the
flow length tool in ArcGIS.

2.4 Terrain-based Model of Forest Productivity
The FSQI developed by Meiners et al. (1984) was used to
predict site productivity from DEM-derived attributes of
each FIA plot. The index assigns ordinal ranks corre-
sponding to relative site quality for each of three at-
tributes, slope, aspect, and slope position, which re-
flect moisture availability in Southern Appalachian for-
est soils. The FSQI is then computed as the unweighted
sum of the ordinal values. Slope was ranked into one of
five integer classes with 1 corresponding to steepest (>
60%) slopes where forest productivity is typically low,
and 5 corresponding to least steep (< 15%) slopes where
productivity is typically high in Southern Appalachian
forests. Aspect was ranked similarly into classes ranging
from 1 to 6, with southerly and westerly aspects having
low values to reflect the relatively high evaporative de-
mands associated with low forest productivity. Slope
positions were ranked from 1 to 5 for classes represent-
ing, in ascending order, the following classes: shoulders
(DEM-derived slope position between 0.75 - 0.9); back-
slopes (0.25 – 0.75); summits (0.9 – 1.0); footlsopes (0.1
– 0.25); and toeslopes, terraces, or floodplains (Meiners
et al. 1984).

2.5 Analysis Approach Data listing actual and al-
tered plot coordinates were projected to a suitable coor-
dinate system so they could be overlaid on DEM-derived
raster layers in a GIS. Cell values from the DEM-based
terrain layers were subsequently assigned to each plot
location and compared between actual and altered lo-
cations. Scatterplots were used to evaluate whether or
not linear relationships existed between DEM-derived
terrain variables from actual versus altered plot loca-
tions. Pearson product-moment correlation, denoted r,
was used to measure the strength of the linear relation-
ship between DEM-derived terrain variables at actual
and altered locations, and Spearman rank correlation
(rs) was used to account for nonlinear relationships. Sta-
tistical significance was determined by Fisher’s Z trans-
formation and a large-sample approximation to the nor-
mal distribution (Best and Roberts 1975; Fisher 1915;
Higgins 2004).

Plot FSQI values were assigned into four classes: (1)
xeric sites, FSQI = 3-6; (2) subxeric sites, FSQI = 7-10;
(3) submesic sites, FSQI = 11-13; (4) mesic sites, FSQI
= 14-16. Categorical FSQI site index classes for actual

and altered plot locations were compared in a contin-
gency table. The kappa statistic was used to examine the
strength of FSQI agreement between actual and altered
plot locations, adjusting for the chance agreement due
to randomness (Stehman 1997). Using the kappa statis-
tic, the validity of substituting actual with altered plot
locations was evaluated with the strength of agreement
ranging from +1 (perfect agreement) to 0 (poor agree-
ment or agreement by chance) (Landis and Koch 1977).

3 Results

3.1 Actual versus Altered Plot Coordinates
Perturbing and swapping plot locations noticeably af-
fected DEM-derived topographic attributes. Correla-
tion coefficients for terrain shape index and flow accu-
mulation did not show significant evidence (α = 0.05)
of positive correlation between actual and altered lo-
cations (Table 1). Percent slope, slope position, and
cosine-transformed aspect values from actual and altered
plot locations were weakly correlated by either correla-
tion measure r or rs (Table 1). Elevation values were
the most consistent of the variables examined between
actual and altered plot locations (Table 1, Table 1). Re-
gardless of the strength or weakness of correlation, dif-
ferences between DEM-derived variables obtained at ac-
tual and altered plot locations had wide ranges, with
correspondingly large sums of squared errors (Table 1).

An example of differences between actual and altered
plot locations was generated to illustrate typical dis-
crepancies observed in data when a plot’s location was
altered (Figure 2). The example simulates a perturba-
tion of 670 m between actual and altered plot locations
in a mountainous section of the study area. Elevations
of 1043 m and 785 m were obtained from the DEM at
the actual and perturbed plot coordinates, respectively.
Percent slopes of 99% (actual) and 2% (perturbed) were
calculated from the DEM, along with aspect angles of
88˚ (actual) and 275˚ (perturbed).

3.2 FSQI Model Agreement FSQI consisted of
scores from 3 (most xeric) to 16 (most mesic). Only
15.4% of plots had the same scores for actual and al-
tered locations. The Pearson product-moment corre-
lation showed a weak but statistically significant posi-
tive correlation r = 0.167 (p < 0.01). When aggre-
gated to four classes, FSQI exhibited 48% overall agree-
ment (Figure 3); however, the strength of agreement was
slight (Kappa = 0.04) when excluding the agreement by
chance.

3.3 Field-Measured versus DEM-Derived Vari-
ables Inconsistencies were noted when comparing FIA
field-observed slope and aspect to DEM-derived values
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Table 1: Pearson product-moment correlation (r), Spearman rank correlation (rs), and root mean squared error
(RMSE ) for comparison of the effects of actual versus altered plot locations in calculating DEM-derived variables.

Variable
Pearson Spearman

RMSE †
r p-value rs p-value

Elevation (m) 0.928 < 0.001 0.930 < 0.001 113.06
Slope (%) 0.383 < 0.001 0.395 < 0.001 23.14
Cosine of aspect 0.093 0.003 0.080 0.010 0.95
Terrain shape index 0.036 0.247 0.019 0.547 4.37
Flow accumulation -0.006 0.860 0.036 0.249 2812.12
Slope position 0.201 < 0.001 0.084 0.008 0.18
†same units as variable. Refer to Table 1 for ranges and scales of
observed data.

Table 2: The contingency table of forest site quality
index (FSQI) for actual versus altered plot coordinates,
accounting for DEM-derived percent slope, azimuth of
aspect and slope position.

Actual locations
FSQI 3-6 7-10 11-13 14-16
3-6 15 42 18 3

Altered 7-10 51 371 183 13
locations 11-13 12 184 98 10

14-16 3 11 6 2

obtained at actual plot locations (Table 2). Correla-
tion between field records and DEM-derived values for
percent slope (r = 0.61) was greater than that between
altered and actual DEM-derived values (r = 0.38, Ta-
ble 1). Correlation between field observations and DEM-
derived values for cosine of aspect (rs = 0.54) was also
greater than that between altered and actual DEM-
derived values (rs = 0.08, Table 1). Fifty-three percent
of plots had field measurements within 10% of DEM-
derived percent slopes. For aspect, 21% of plots had
field measurements within 10˚ of DEM-derived aspects
(Figure 4).

4 Discussion and Conclusions

Differences are substantial when perturbed and
swapped plot locations are used in place of actual plot
locations to derive terrain variables from a 10 m DEM in
the Southern Appalachian Mountains, USA. It is widely
known that microscale variation in landform and terrain
affects temperature and soil moisture, thus influencing
plant growth, especially in mountainous regions (Bai-
ley 2009; Roise and Betters 1981; Stage and Salas 2007).
Applying this knowledge to the results obtained here,
perturbed and swapped plot locations may not prove

Table 3: Quality assessment of interchange of terrain
values – percent slope and azimuth of aspect – between
FIA field measurements and DEM-derived values from
actual plot locations. Percentage of plots based on dif-
ferent levels of tolerated errors (sample size = 767).

Percent slope Azimuth of aspect
Error (%) Plots (%) Error (˚) Plots (%)

±5 31.2 ±5 12.3
±10 52.8 ±10 21.3
±15 68.8 ±15 32.5
±20 79.5 ±20 39.9
±25 87.2 ±25 45.8
±30 91.4 ±30 50.7

useful when modeling forest productivity, species com-
position, or other attributes related to terrain variables
because the fine-scale information from 10 m DEMs does
not generally apply equally at both actual and altered
plot locations. Although the FSQI model has been ap-
plied in forest productivity research of upland oak forests
in the Southern Appalachians (Bolstad et al. 1998; Ross
et al. 1986), little evidence was found here to support
that FIA altered plot locations could be used to calcu-
late FSQI in lieu of actual plot locations.

The number of terrain based, GIS derived variables
currently used in ecological and hydrological applica-
tions is large and growing (Horsch 2003; Tenenbaum et
al. 2006). Plot locations released to the public by the
FIA program are altered by perturbation and swapping
as required by law; therefore, obtaining fine scale topo-
graphic variables for FIA field plots is problematic. One
possibility that may serve end-users’ needs is for the FIA
database to incorporate some DEM-derived values from
actual plot locations in the publicly released data sets.
As noted by Liknes et al. (2005), such an approach must
be evaluated first for the possibility that it would com-
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Figure 2: Scatterplots of terrain variables for actual and altered plot locations: elevation, percent slope, cosine of
aspect, terrain shape index, flow accumulation, and slope position (sample size = 1022).

promise the confidentiality of FIA plot locations.

The potential for interchanging FIA field terrain mea-
surements with DEM-derived estimates is somewhat un-
favorable for either developing or applying topographic-
based models as well. According to the FIA (2007) field
manual, allowable tolerances for percent slope and az-
imuth of aspect errors were ± 10% and ± 10˚, respec-
tively, on at least 90% of plots measured. Even though
actual plot locations were used, DEM-derived slope and
aspect did not meet these accuracy standards (Figure 4).
The algorithms used in GIS-based terrain analysis do
not measure slope and aspect in the same ways as they
are measured in FIA field procedures, so this compari-
son should not be taken as evidence that FIA standards
for field measurement accuracy are not being met. We
make the comparison here to inform readers that field
measurements of terrain variables in the FIA database
are not interchangeable with DEM-derived values in the

Southern Appalachian Mountains.

Opportunities for spatial modeling by linking FIA
data to ancillary geospatial data have increased along
with the availability of geospatial data, e.g., DEMs
(Davis et al. 2007; Tirpak et al. 2009; Zarnetske et
al. 2007). These opportunities will continue to increase
as more geospatial information at higher resolution be-
comes available. Regardless of the need for and use
of accurate ancillary spatial datasets, the usefulness of
such datasets is related to the accuracy of the plot lo-
cations. Although errors in actual locations were not
considered in this analysis, these errors create addi-
tional uncertainty for the types of analyses presented
here (McRoberts 2010). For example, the FIA program
typically uses recreation-grade GPS units to collect co-
ordinates of each inventory plot. These types of GPS
units have under-canopy positional accuracies of approx-
imately 7.5 m and a maximum error of 21.5 m (Bolstad
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Figure 3: A simulated example of plot perturbation to illustrate differences in elevation, slope, and aspect typical of
those observed in comparison of DEM-derived terrain variables from actual versus altered FIA plot locations.

et al. 2005; Forest Inventory and Analysis 2007). Given
the positional uncertainties, the FIA program might con-
sider reporting accuracy of the actual locations, when
available, to those clients who have access within a con-
fidentiality agreement to work with actual plot coordi-
nates. This information is particularly important when
conducting research to develop models based on fine res-
olution spatial data such as DEMs and remote sensing
imagery. In keeping pace with the increased resolution
and spatial precision of publicly available spatial data
sets, researchers and end-users must be aware of the lim-
itations that perturbing and swapping of FIA field plot
coordinates impose on applications involving fine-scale
geospatial analyses.
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