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Abstract. When modelling a large area, models that can take into a count the variation from the general
mean in small sub-areas could perform better in prediction than a general model fitted to entire dataset.
One method for adjusting the large-area models for such variation is kriging, in which the predictions are
corrected with the aid of neighbouring observations. A variogram represents the spatial correlation between
neighbouring observations as a function of distance. The predictions are obtained using a drift model that
describes the general mean, and the selected variogram. The aim of this study was (1) to test for a spatial
correlation in the residuals of a global form height model fitted over a large study area and (2) to use
this correlation in prediction of the same variable. The dataset consisted of measurements from 19 175
Scots pines (Pinus sylvestris L.) from the 9th National Forest Inventory of Finland. Nested spherical and
Bessel variograms were selected for the kriging calculations. In nested models the short-range (intra-stand)
correlation and long-range (inter-stand) correlation are modelled separately. We used cross-validation to
evaluate the variogram models selected. At the global level, 30 neighbours were needed for stable estimates,
and with 60 neighbours the root mean squared prediction errors (RMSPE) of kriging were lower than those
of the global model. At the regional level, we obtained better estimates than with regionally re-fitted models
when the number of neighbours was 60 for both variogram models. The mean biases (i.e., average difference
between actual and predicted values) at the regional level in the kriging predictions were small (0.8% of the
regional RMSPE). In conclusion, there was an app. 6-km spatial correlation in the residuals, but due to
relay effect the size of the kriging neighbourhood required for improving prediction was larger than the range.
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1 Introduction

Forest inventory is based on samples that are used to
estimate the values of interest in the entire population
(e.g. Shiver and Borders, 1996; Johnson, 2000). For
instance, for all measured trees (the tally trees), often
only basic characteristics such as species and diameter
at breast height (usually, 1.3 m above ground; DBH) are
measured. Only a proportion of them (sample trees) are
measured for height and other characteristics. Models
describing the variables measured from sample trees as
a function of variables measured from tally trees are used
to generalize these variables to tally trees. Commonly
in forest inventories, the species and DBH are obtained
for all trees of a plot, and for a subset of these trees,
height and other measures are taken. A global regres-
sion model (i.e. model covering the entire study area)
is a tempting alternative in such situations because it
is easy to implement once it has been formulated. The
problems in such models occur before implementation;

i.e.in finding the correct form of dependences between
the dependent and independent variables.

When the dependences are found, the model needs
to be validated. One requirement for a global model is
that the model is not biased with respect to any inde-
pendent variable, i.e. residuals do not have any trends
over space, but are instead randomly distributed over
space. If this requirement is fulfilled, questions still re-
main: “How well will this global model predicted for
smaller regions? Will there be a trend of residuals over
space?” One alternative to the global model is to use
local models. The definition of a local model is ambigu-
ous. In predicting at a local area, the options include:
1) fitting the global model for each region; 2) including
region as a class variable in the model, along with in-
teractions with all continuous variables, resulting in the
same coefficients as with option 1) but fitting is based on
the entire data set resulting in increased precision; or 3)
fitting a regional specific model with different explana-
tory variables. Of these options, option 2 makes use of

Copyright c© 2011 Publisher of the Mathematical and Computational Forestry & Natural-Resource Sciences
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the entire dataset, resulting in the same coefficients as
option 1), but with lower standard errors of coefficients.

Another problem is to define the optimal regions for
the localization, since localization based on administra-
tive borders, such as forestry centres in Finland, is not
necessarily the most accurate. In defining the localiza-
tion areas, three issues need to be considered. First and
most important, the regions should be as homogeneous
as possible with respect to the global regression residu-
als. The smaller the regions are, the more homogeneous
they also can be. Second, the optimal sizes of the sub-
areas delineated must be defined. Most probably there is
some threshold size for the sub-area below which the lo-
calizing does not improve the predictions significantly or
the result may even be poorer than before localization.
The size and number of sub-areas are related, even if
the sub-areas are not evenly sized. Third, it needs to be
considered if there is any practical reason to constraint
the shapes of the regions.

As an alternative to including local region as a fixed
effect class variable in a global model, or fitting separate
local models, spatial prediction approaches offer alterna-
tives. These spatial prediction approaches can be use to
localize the model without strict spatial (i.e., regional)
boundaries, using all neighbourhood. The concept of
spatial association (SA) (e.g. Cliff and Ord, 1981) sim-
ply states that two observations near each other are most
probably more alike than two observations that are far-
ther apart. One way to test the existence of SA is to cal-
culate spatial indicators, e.g. I-, C-, G-, and G*-indices,
both local and global (Anselin, 1995; Getis and Ord,
1992; 1996; Boots, 2002). The other way to find the SA,
although in continuous form, is to calculate a spatial cor-
relation from the data. If this spatial correlation from
the neighbourhood of an observation is utilized in pre-
dictions, in connection with the global regression model,
the method is called universal kriging, kriging with ex-
ternal drift (KED), kriging with distinction, or residual
kriging (Hengl et al., 2003; Schabenberger and Gotway,
2005). In this paper, we will use the terms universal
kriging and KED. In kriging the spatial correlation is
modelled with a distance and direction dependent var-
iogram. Typically, the correlation is strongest near the
origin and vanishes within finite range.

The origins of kriging are in minefield calculation and
geology (e.g. Isaaks and Srivastava, 1989). Since then,
the method has spread widely to other disciplines, such
as remote sensing and ecological surveying in seed zone
and biomass mapping (Hamann et al., 2000; Sales et al.,
2007); interpolation of parameters (Nanos and Montero,
2002); temporal and multi-resolution studies (Fuentes
et al., 2006; Johannesson et al., 2007; Magnussen et al.,
2007); studies in combination with mixed models (Nanos
et al., 2004), and prediction of leaf litterfall (Staelens

et al., 2004). One of the most common applications of
kriging is the interpolation of point or plot data onto a
surface using geographic information system (GIS) soft-
ware.

In universal kriging, the prediction given by regres-
sion model is ‘corrected’ or ‘adjusted’ to fit the sur-
rounding observations of residuals. The residuals are
weighted with the variogram model presenting the SA
in the neighbourhood (Webster and Oliver, 2007). In
the present study, the regression model is a tree level
form height model that is fitted over the study area.
The correlation of the residuals of the global model, i.e.
the SA, is studied. Actually, to be precise, we used var-
iograms and variances instead of the correlation; these
two are optional and one can be converted to the other.
Finally, we calculated the kriging predictions of form
height for all the trees with the given variogram and
regression model. Our purpose was to compare these re-
sults from the universal kriging with previous regression
model localization results, in which our focus in addi-
tion to localization was on the various methods used to
divide the study area into homogeneous regions (Räty
and Kangas, 2008; 2010).

2 Materials and methods

2.1 Study area description and sampling The
study area was located in Southern Finland (Fig. 1).
It covered all the forest land both private and state
forests, managed and unmanaged forests. The study
area belonged to boreal zone and forests were mixed
forests where the dominant species are Scots pine (Pi-
nus sylvestris L.), Norway spruce (Picea abies L.) and
Silver Birch (Betula pendula L.). Data from the 9th
National Forest Inventory (NFI) collected from 1996 to
2003 (not repeated measures data) were used for this
study. The NFI was systematic cluster sampling, where
plots were arranged in clusters and trees were measured
from these angle gauge plots (also called variable radius
or unequal probability sample plots) using a basal area
factor (BAF) of 2 m2/ha. There were three different
regions in respect to the sampling design in the study
area. Because the sampling design varied (for example,
the number of plots was from 10 to 18 depending on
the region), we have collected some statistics about the
inter-plot, intra-cluster and inter-cluster distances (Ta-
ble 1; NFI9, 2011).

We selected from the measured sample trees healthy
Scots pines with diameter at breast height (DBH) over
4 cm, for which the heights were measured and volumes
estimated. With these restrictions, we obtained 19 175
trees from 14 782 plots in 3 536 clusters, with diameters
and heights ranging from 5 to 67 cm and from 2 to 35
m, respectively (Table 2). So, normally there were only
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Figure 1: Left - Study area in southern Finland. Right - forestry centres within the study area.

Table 1: Statistics for distances (km) to describe the sampling design in different regions in study area.

Region Forestry Inter-plot Intra-cluster Inter-cluster Inter-cluster
centres minimum maximum minimum plot minimum

Åland 0 0.25 2.5/1.8 4.2/6 1.5
Southernmost Finland 1a, 2, 3, 4, 5, 6 0.25 2.5/1.8 6 4.5
Central Finland 1b, 7, 8, 9, 10 0.30 2 7 5.5

one sample tree at plot, the maximum was five trees.

We calculated minimum, median, mean and maximum
distances to the nearest neighbouring sample trees for
each forestry centre and for varying number of neigh-
bours (Table 3). For 40 neighbours the smallest neigh-
bourhood was a 5.8-km circle in forestry centre 0, while
the overall average was 10.7 km and the maximum 40.9
km in forestry centre 1b. For 60 and 100 neighbours
the average distances were 13.4 km and 17.4 km, re-
spectively. Forestry centres 1a and 1b on the south and
north coasts of the study area had the largest distances,
since there were plot clusters on islands in those parts
of the area and relatively sparse sampling design. The
distances were also large in forestry centre 3, probably
due to the low number of total observations compared
with the size of the area (Fig. 1b; Table 7). The Åland,
forestry centre 0, had the smallest neighbourhoods, but
also the densest sampling design. Inner forestry centres
(5 and 6) also had distances among the shortest of any
of their neighbours. Since the kriging calculations were
not limited to these administrative regions, neither were
the neighbourhoods above. Trees near the border may
have neighbours from other forestry centres as well. The
neighbourhood is always the given number of nearest ob-

servations regardless of the location in forestry centre.
This is different from the previously used methods where
only the observations within selected sub-area are used
in localization (Räty and Kangas, 2006; 2008; 2010).

2.2 Global model We fitted the global form-height
model using diameter at breast height, basal area, and
distance to the coast, as well as a quadratic surface using
spatial coordinates as explanatory variables as follows:

v
d2 = β0 + β1d + β2d

2 + β3 ln (G)+
+α1XC + α2XC2 + α3XC · Y C+
α4Y C + α5Y C2 + α6RDIST + ε,

(1)

where v
d2 is a measure proportional to the form height of

a tree, which we will later simply refer to as form height;
d is DBH; G is total basal area of the plot including all
tree species; and ε is the residual error at the tree level.
The XC and XY coordinates and RDIST were scaled
using the following: the scaled spatial variables XC, YC
and RDIST (Eq. 2):⎧⎪⎪⎨

⎪⎪⎩

Y C = Y −6620
1000

XC = X−60
1000{

RDIST = 1
DIST+0.05 , DIST ≤ 20

RDIST = 0, , DIST > 20
,

(2)
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Table 2: Statistics for Scots pine (Pinus sylvestris) sample trees: diameter at breast height, diameter at 6 m height,
height, volume, v/d2 (measure proportional to form height) and actual form height in the study data. G is the total
basal area of the corresponding sample plots.

Min. 1stQ Med. Mean 3rdQ Max.
d [cm] 5 14 19 20.55 27 67
d6 [cm] * 11 16 16.4 22 51
h [dm] 20 105 146 150 193 352
v [dm3] 3.7 80 204 331 479 2882
G[m2/ha] 1 16 21 21.15 27 60
v/d2 [dm3/cm2] 0.148 0.413 0.543 0.553 0.677 1.305
fm [m] 1.9 5.3 6.9 7 8.6 16.6

∗2561 of the sample trees were less than 6 m in height.

Table 3: Distances (km) to the 40, 60 and 100 closest neighbours by the forestry centre (FC).

FC Minimum Median Mean Maximum
Neighbours 40 60 100 40 60 100 40 60 100 40 60 100
0 5.8 8.3 11.0 8.7 10.5 15.2 9.9 12.4 17.0 25.2 28.5 35.0
1a 7.0 9.1 13.2 12.5 15.1 20.2 12.5 16.3 20.8 31.8 36.9 44.0
1b 7.4 9.4 14.1 11.0 14.5 19.4 12.3 14.9 19.8 40.9 44.3 50.7
2 6.4 8.0 12.0 9.3 12.4 16.5 10.0 12.6 16.3 25.0 27.7 32.6
3 7.3 9.0 12.8 12.8 14.9 19.8 12.6 15.7 20.2 19.2 25.1 29.3
4 6.0 7.4 12.0 9.1 12.2 14.3 10.0 12.6 16.1 30.4 32.7 36.6
5 6.0 7.8 11.0 9.6 12.5 16.5 10.2 12.7 16.5 18.0 21.4 25.3
6 6.6 8.5 12.4 9.2 12.4 16.1 9.8 12.5 15.9 15.4 19.8 24.1
7 7.0 8.9 13.6 9.7 13.2 15.5 10.3 12.9 16.7 16.8 21.0 27.7
8 7.0 8.2 11.0 9.9 13.7 16.2 10.9 13.4 17.7 21.0 23.6 29.3
9 7.0 9.3 14.0 12.5 15.5 19.8 12.2 14.5 19.5 19.6 22.4 28.3
10 7.0 8.2 12.5 9.7 13.7 15.8 10.6 13.4 17.7 23.5 28.4 34.5

where X and Y are the spatial positions in Kartastoko-
ordinaattijärjestelmä (KKJ), which is a national Gauss-
Krüger map projection system used in Finland and mea-
sured in kilometres, and DIST is the distance from the
coastline in kilometres (see Korhonen, 1993, and Kan-
gas and Korhonen, 1995, for a detailed discussion of the
model, Eq. 1, and the scaling, Eq. 2). We expect the
residuals to be spatially correlated.

2.3 Spatial correlation and variogram model for
residual error The first step in universal kriging is ex-
amining and modelling the spatial correlations (or co-
variances) of residuals. A variogram shows the variance
in the residual (ε) at different distances (e.g. Cressie,
1991; Webster and Oliver, 2007):

2γ (s1 − s2) = var (ε (s1) − ε (s2)) , (3)

where s1 and s2 are two positions belonging to the study
area and 2γ () is a variogram, while its half-value, γ (),
is called a semivariogram. We assumed the residuals

to be intrinsically stationary, i.e. we assumed that the
expected value of the difference ε (si)−ε (sj) is constant
at a direction-dependent distance class h = |si − sj| îij,
where îij is a unit length normalized vector. In addition,
we assumed that the variogram was also isotropic, i.e. it
was not direction-dependent. Then, the previous vector
h could be replaced by a scalar h and we could estimate
the variogram in Eq. 3 as

2γ̂ (h) =
1

|N (h)|
∑
N(h)

(ε (si) − ε (sj))
2
, (4)

where |N (h)| is the number of the observation belonging
to distance class h (a lag). The only parameter, whose
value was not predetermined in this empirical variogram
or sample variogram calculation, both names are used,
was the lag distance, i.e. the width of single distance
classes to which the point pairs would fall.

Using the data for the empirical variogram, we fit-
ted variogram models with certain ranges, nugget effects
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and sills. The nugget effect is the height of the jump
of the semivariogram at the origin, usually assumed to
be non-spatial variation. Sill is the limit the variogram
approaches to at infinite lag distance and range is the
distance at which the difference of the variogram from
the sill becomes negligible. In addition, we use a term
partial sill to describe the level difference between the
sill and the nugget effect. With these empirically ob-
tained measures we tested which type of the variogram
model would best describe the SA present in the data.
We tested exponential, Gaussian, circular, Bessel and
spherical models (Cressie, 1991). We will use the best-
fitting variogram model in the kriging phase. Also the
anisotropy of the variogram was tested by dividing the
space from 2 to 6 different direction classes in empirical
variogram calculations. All calculations were carried out
with R software, which is a language and environment
for statistical computing and graphics (R development
core team, 2009). In R software geostatistical modelling,
prediction and simulation (gstat) package offers func-
tions for empirical variogram creation (variogram with
initial values for nugget and range) (functions variogram
and vgm) and variogram model fitting to an empiri-
cal variogram (fit.variogram) (Pebesma and Wesseling,
1998; Pebesma, 2004).

2.4 Spatial prediction using universal kriging
For universal kriging in this research, the coefficients
(i.e., the vector β) of the global model, Eq. 1, are un-
known. Using notation of a mixed linear model:

Z = Xβ + ε, (5)

where the residuals ε are a zero-mean, intrinsically sta-
tionary random process with variogram (2γ); matrix X
is often called the design matrix, which includes the mea-
surements of independent variables in the global model
(Eq. 1); and Z is the form height. In cases where the
covariates in addition to coordinates include also other
variables, some prefer to designate this method as krig-
ing with external drift, KED (Hengl et al., 2003).

Estimated generalized least squares estimator (EGLS)
of β is:

β̂EGLS=
(
X′Σ̂

−1
X

)−1

X′Σ̂
−1

X, (6)

where Σ̂ is an estimated variance-covariance matrix,
where all elements are estimated by the defined vari-
ogram model for observations.

If a Z in point B, Z∗(sB), is desired, it can be pre-
dicted as a weighted sum of its neighbours:

Z∗ (sB) =
N∑

i=1

λiz (si), (7)

where λi is the weight given to an observation i, N is
the number of neighbours and z is the value of the target
measure at point si.

The estimates for weights, λ̂, for the neighbours in
Eq. 7 are found as a result of the following system of
equations (Eqs. 8-10):

N∑
i=1

λ̂iγ (si, sj) + Ψ0 +
K∑

k=1

Ψkxk (si) = γ (sB, sj) , (8)

for all j, j = 1, 2, . . . , N

N∑
i=1

λ̂i = 1, (9)

N∑
i=1

λ̂ixk (si) = xk (sB) , (10)

for k = 1, 2, . . . , K,
where λ̂ is the estimate of the weight λ (Eq. 7), γ the

semivariance between the given points si, N the number
of neighbours not including the target point sB , x the
independent variables in the matrix X (in Eq. 5) and Ψ
are the Lagrange multipliers. The second equation (Eq.
9) ensures that the weights add up to one.

It can be shown (e.g. Bailey and Gatrell, 1995, 5.5.6–
5.5.7) that the solution of (Eqs. 8–10) leads to the fol-
lowing predictor for Z at point sB :

Z∗ (sB)= c′Σ̂−1Z +
(
x− X′Σ̂

−1
c
)

β̂EGLS, (11)

where the x vector has the same variables in the same
order for point sB as the original X matrix, and c is a
vector of covariances between the prediction point and
the surrounding observations. R software has a func-
tion krige.cv for kriging cross-validation (Pebesma and
Wesseling, 1998; Pebesma, 2004).

2.5 Validation of spatial predictions in local
neighbourhoods We carried out leave-one-out cross-
validation and 10-fold kriging cross-validation. In leave-
one-out cross-validation only the one observation, for
which the value was predicted, was extracted from the
dataset. 10-fold cross-validation means that the entire
dataset was randomly divided into 10 subsets, each of
which was in turn extracted from the data. We then
predicted the values of the dependent variable for each
observation in each extracted subset with the remaining
data. As a result, we obtained a matrix containing the
location, prediction and residual for every single obser-
vation in the original data matrix.

In our case, a practical solution was to limit the krig-
ing in the local neighbourhood of an observation by the
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number of nearest neighbours, for two reasons. First,
the inverse matrix calculation becomes laborious with-
out limitations and, second, the correlation between ob-
servations vanishes after a few kilometres. This limi-
tation also weakens the requirement of stationarity to
concern only the local stationarity (Webster and Oliver,
2007).

The RDIST variable in the form height model (Eq. 1)
attains values from 0 to 20 (Eq. 2), and only in coastal
forestry centres differs from zero. In kriging calculations
this is a problem; because if for some neighbourhoods
also the RDIST variable is constant, the intercept and
RDIST columns in the X matrix become collinear and
the matrix X′Σ̂

−1
X cannot be inverted. Therefore, we

removed this variable from Eq. 1 and from all calcula-
tions, starting from global model and variogram fitting
to the kriging cross-validation.

Although the kriging was carried out throughout the
study area for individual trees, we examined the results
regionally. In three previous studies (Räty and Kangas,
2007; 2008; 2010) we focused on area division techniques
and methods. In the 2008 study, we introduced the ad-
ministrative forestry centres division for the study area
(Fiq. 1b), which we will use here, in order to make the
results comparable with the previous results. For these
areas we calculated the biases (Eq. 12) and root mean
squared prediction errors (RMSPEs) (Eq. 13):

bias =

n∑
i=1

ε̂i

n
(12)

RMSPE =

√√√√√
n∑

i=1
ε̂2
i

df
=

√
bias2 + st.dev2, (13)

where df = degrees of freedom = n (the number of ob-
servations in a forestry centre) and δ is prediction error
in cross-validation:

ε̂i = fhi − fĥi, (14)

where fh is the measured form height and fĥ is pre-
dicted.

To compare the localization methods on the global
level, we calculated an aggregate estimate of standard
error:

seaggr =

√√√√√
1(

m∑
i=1

n2
i

) ·
m∑

i=1

n2
i MSPEi, (15)

where MSPE (mean squared prediction error) is the
square of Eq. 13 and m is the number of forestry centres.

At the regional level, the proportion of bias in the
regional RMSPE shows the potential improvement that
could be gained by introducing a regional factor into the
model in KED (Eq. 16):

Biasrel =
bias

RMSPE
· 100% (16)

3 Results

3.1 Variograms We calculated and plotted the em-
pirical variograms from the residuals of the global model
(Eq. 1) with different lags (Fig. 2). In the selection of
the empirical variogram the balance between smooth-
ness of the empirical variogram and the lag distance has
to be found. With large lag distances the number of
the point pairs in the bins increases (Table 4), the var-
iogram smooth, but the smoothing can hide the actual
small scale processes (trends) in the data. We selected
the variogram with a lag distance of 200 m, which was
just below the minimum inter-plot distance of 0.25 km
in the study area (Table 1), because it was the shortest
lag distance showing the trends and still the inter-stand
and intra-stand variations do not overlap.

Table 4: Number of point pairs in the bins

100 m 200 m 300 m 1 km
Minimum 9 61 98 919
Median 4427 9809 15576 49340
Mean 5380 10688 16032 53439
Maximum 25075 32283 44625 125402

The first bin in the selected empirical variogram was
at 10 m, where the semivariance was 0.006867 dm6/cm4.
The next semivariance at 277 m was 0.009045 dm6/cm4.
The change in level of the semivariance was so steep that
we decided to fit a nested variogram model (Fig. 3b) in
the empirical variogram, in which the short-range ‘intra-
plot correlation’ with range of 100 m and the long-range
‘trend’ were separated, instead of simple variogram mod-
els (Fig. 3a). The short-range component describes the
nugget effect of the variogram model, and it was effective
only for those trees in the same plot as the tree of predic-
tion. The range of the short-range component was fixed
at 100 m not fitted. The long-range model describes the
correlation with the residuals in other plots and clusters.
Its nugget effect was fixed to be zero. These two com-
ponents formed the variogram model, which was then
fitted to the empirical variogram.

The difference between nested and non-nested vari-
ogram models is evident. The simple variogram model
could only find the correlation within the first kilome-
tre (Fig. 3a) whereas the nested models had ranges from
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Figure 2: Empirical variograms with different lag distances from 100 m to 1 kilometre. Distance (km) is at x-axes
and semivariance (dm6/cm4) at y-axes.

app. 5 km to 12 km (Fig. 3b; Table 5). We evaluated the
models visually (Fig. 3b, c). All the models were almost
similar at distances below 3 km. Though, there were
differences, as you can see from the Fig. 3c for the first
kilometre, it has to be remembered that the trees were
located at plots (inter-plot distance 250-300 m, Table 1)
and the small differences visible in the figure vanish.

The nugget effect was from 0.0065 to 0.0068 dm6/cm4

(Table 5). The circular, Gaussian and spherical vari-
ogram models were almost identical for the remaining
distances at ranges of 6.2, 3.7 and 6.8 km, and the
sill approx. 0.01 dm6/cm4, showing the best fit in the
empirical semivariogram (Fig. 3a; Table 5). In con-
trast, the exponential and Bessel models formed another
group (Fig. 3a), which had a slightly higher sill of 0.011
dm6/cm4 and larger ranges than the previous group of
variogram models. We selected the spherical and Bessel
models to describe the correlation in kriging calculation
after this point. There was no evidence of anisotropy,

though directional variograms with several different di-
vision of the space were compared.

3.2 Kriging In the 10-fold cross-validation, we split
the data into 10 almost equally sized parts for which
the predictions were made. Division into 10 folds was
selected instead of the leave-one-out cross-validation be-
cause it saved the calculation capacity considerably, but
did not have remarkable impact on the results (Table
6). In the NFI9, the sampling design varied in differ-
ent parts of the study area (NFI9, 2011; Table 1) which,
in practice, meant that the number of neighbouring ob-
servations as a function of distance from a tree varied.
Therefore, we limited the neighbourhood by number of
neighbours from 20 to 100 trees instead of by distance
limitation.

The RMSE (root mean squared error) for the global
model (Eq. 1) without RDIST was 0.1032 dm3/cm2 and
0.1027 dm3/cm2 with RDIST. On the global level, the
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Figure 3: The empirical semivariogram (dm6cm−4) for a lag distance of 200 m (dots) as a function of distance (km),
and then overlaid on the empirical variogram a) variogram models, b) nested variogram models with a 15-km cutoff
distance; and c) nested variogram models near the origin.
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Table 5: Parameters of the fitted nested variogram models: nugget effect at the origins, partial sill (sill minus nugget
effect) and ranges in kilometres for the short-range part (= 0.1 km) (Nugget O) and for the long-range part (Nugget
M).

Model Nugget O Psill Range Nugget M Psill Range
Exponential 0.006629 0.002483 0.1 0 0.002097 11.8
Circular 0.006558 0.002411 0.1 0 0.001277 6.2
Gaussian 0.006845 0.002207 0.1 0 0.001294 3.7
Spherical 0.006496 0.002459 0.1 0 0.001287 6.8
Bessel 0.006830 0.002473 0.1 0 0.001454 5.2

RMSPEs for kriging with different numbers of neigh-
bours are shown in Table 6. The first estimates with 20
neighbours were unstable and the RMSPEs were high.
With 30 neighbours the situation improved considerably,
but with 40 neighbours the estimates and RMSPEs were
stable in all folds and forestry centres (Table 7). Both
variogram models gave similar results. In all, 60 neigh-
bours were needed to obtain RMSPEs for kriging that
were below the RMSE of a global regression model with
both variogram models.

At the forestry centre level, the reference was a lo-
calized regression model (Räty and Kangas, 2008). In
this case it was simply Eq. 1, including the RDIST
variable, re-fitted to the forestry centres. The refer-
ence value here is 0.1016 dm3/cm2, the aggregate value
of the regional RMSEs of the locally re-fitted models.
The kriging method had lower aggregate standard errors
when the number of neighbours increased to 60 (Table
6). With regard to distances, this means an average
kriging neighbourhood of 13.7 km (Table 3).

The regional biases, compared with the RMSPE in the
same region (Eq. 16) with different variogram models,
varied from -2.4% to 2.9% with neighbours from 40 to
100 (Table 8). The average bias was 0.8% for all forestry
centres (calculated as the average of absolute value of
biases proportional to the regional RMSPE). This shows
the potential improvement in RMSPE if a regional factor
were added to the model, i.e. this is the possibility for
further localization after the kriging is carried out.

4 Discussion

One of the most important since this gives very dif-
ferent results than universal kriging is fitting of the var-
iogram model to the empirical variogram. It eventu-
ally determines the weights given to neighbours. Pre-
viously, Tomppo et al. (2001, Figs. 4, 5, p. 105) stud-
ied the variograms and correlations of the mean volume
and age in the NFI7 data in central Finland. They dis-
covered a relatively large correlation (0.4–0.5) for both
variables at 200 m. In the NFI9 the plot distance was
increased to 300 m, and the correlations shown in the

above-mentioned figures were approximately 0.3–0.4 at
that lag. The estimated correlations in this study at the
origin were 0.37 for both variogram models (Table 5)
(see Bailey and Gatrell, 1995), and at 300 m 0.12 and
0.16 for the spherical and Bessel models, respectively.
However, as Tomppo et al. (2001) studied the correla-
tion between the actual measurements, and we studied
the correlation between the residuals, from which the
obvious trends were already removed, this smaller value
is understandable.

The changes in inter-cluster and inter-plot distances,
i.e. in sampling design, have a direct impact on the var-
iograms and kriging, however. First, when the distances
to neighbours increase or, in other words, the proba-
bility of having neighbours at short distances diminish,
and therefore the SA between neighbouring observations
and the pivot observation decrease. Second, since the SA
weakens, the power of kriging also decreases; corrections
based on the correlation between neighbours cannot be
utilized as efficiently as previously. In our case, although
the inter-plot distance was 250–300 m (Table 1), the SA
could be found (Figs. 2b, c). Obviously, a zero correla-
tion would mean there is no need for local adjustment
in the first place, but the residuals are random.

The two variogram models selected, spherical and
Bessel, were both nested models. In nested models the
short-range part was fitted with fixed range of 100 m,
which is less than the inter-plot distance (Table 5). So,
the short-range part is the plot level variation (error). If
the model (Eq. 1) had a plot level error, likely the nested
variogram models would not have been needed. Never-
theless, the selected nested variogram models differed in
sill and range, but the nugget effects were similar (Ta-
ble 5). The level of the sill as such is not as important
as the shape of the variogram model, the ratio of the
nugget effect or value of the variogram at a certain dis-
tance to the sill, which gives the correlation between the
observations. When the nugget effect is large in compar-
ison to the sill, observations further from the origin may
have remarkable impact on the prediction (Webster and
Oliver, 2007). Therefore, if the slope in which the sill
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Table 6: RMSPEs (dm3/cm2) for the kriging estimates with 10-fold cross-validation and leave-one-out cross-validation
of the form height with two variogram models, spherical (Sph) and Bessel (Bes), at global level, and differences to
the global model RMSE (ΔSph and ΔBes) and to the forestry centre localized functions (ΔSphloc and ΔBesloc).

Neighbours Sph Bes ΔSph ΔBes ΔSphloc ΔBesloc

20 0.3012 14.07 0.1985 13.96 0.1996 13.97
30 0.1124 0.1124 0.0097 0.0097 0.0108 0.0108
40 0.1055 0.1058 0.0028 0.0031 0.0039 0.0042
50 0.1029 0.1033 0.0002 0.0006 0.0013 0.0017
60 0.1014 0.1011 -0.0013 -0.0016 -0.0002 -0.0005
70 0.1001 0.1007 -0.0026 -0.0020 -0.0015 -0.0009
80 0.0995 0.0999 -0.0032 -0.0028 -0.0021 -0.0017
90 0.0992 0.0995 -0.0035 -0.0032 -0.0024 -0.0021
100 0.0985 0.0987 -0.0042 -0.0040 -0.0031 -0.0029

Leave-one-out cross-validation
40 0.1054 0.1053 0.0027 0.0026 0.0038 0.0037
60 0.1007 0.1007 -0.0020 -0.0020 -0.0009 -0.0009

is approached is gentle, a relatively high weight is given
to observations far from the origin. The Bessel model is
an example of this; it approaches its sill asymptotically
and therefore the range given is only about one-fourth of
an effective range (Webster and Oliver, 2007), whereas
the range given for the spherical model equals the effec-
tive range. Considering this property, the ranges for the
variogram models were 6.8 km and 5.2 km for the spher-
ical and Bessel variogram models, respectively. In prac-
tice, this means that all observations belonging to the
same cluster were correlated and the correlations were
extended to neighbouring clusters with both variogram
models, as well. With the Bessel variogram model, small
weights were given for plots in the clusters behind the
neighbouring clusters and even further away, because the
effective range was over 20 km. In fact, observations be-
yond the effective range may also bear weight, since the
proportion of the nugget effect of the sill is larger than
that of the partial sill (e.g. Webster and Oliver 2007, p.
168).

The fluctuation and periodicity in the empirical vari-
ogram after 5 km cannot be explained with small num-
bers of pairs in the bins (Fig. 3b; Table 4), nor with the
anisotropy of the variogram, but it could have resulted
from the natural extent of forest patterns and compart-
ments. In empirical variograms the estimates are nor-
mally strongly autocorrelated (Jowett, 1955; Chilès and
Delfiner, 1999, p. 111, 205; Schabenberger and Pierce,
2002, p. 617; Diggle et al., 2003, Fig. 2.10) and this cor-
relation, combined with the clustered empirical design,
could be an explanation to the apparent periodicity in
empirical variograms. Schabenberger and Pierce (2002)
call this relay effect. Nevertheless, the variogram mod-
elling at short distances is more important in respect to

kriging than the periodicity.
Kriging in the local neighbourhood could have been

implemented either by setting the maximum distance
limit to the neighbourhood, possibly combined with the
requirement for a minimum number of neighbours, or by
setting directly the number of neighbours. We selected
the latter course; the kriging neighbourhoods were lim-
ited directly by the number of neighbours. Kallas et al.
(2003) used four neighbours in their study, while Web-
ster and Oliver (2007) suggested that usually 20 neigh-
bours are sufficient. Given this clustered data with single
data points situated on islands or near the great inland
lakes, 30 neighbours were needed to obtain the first sta-
ble estimates for the estimated pivot. On average this
meant a 10-km circular neighbourhood. To obtain lower
RMSPEs than the global or the regionally localized mod-
els (Tables 6; 7) the distances increased up to 13.7 km
(Table 3).

The neighbourhood distances and RMSPEs varied in
different forestry centres, but a small neighbourhood in
kilometres did not automatically mean low RMSPEs.
Good examples of these contrasting results were forestry
centres 1b and 6; the first had only a few observations
predicted from the largest neighbourhoods in the dataset
(max. 48 km), but its RMSPEs were among the lowest
(Tables 3; 7). The second sub-area, forestry centre 6,
had the smallest neighbourhoods (max. 22 km), but the
RMSPE was one of the largest. Some explanation to
these differences could have resulted from the differences
in form height in both sub-areas. The range of form
heights is smallest in the forestry centre 1b whereas in
forestry centre 6 it is the second largest.

In leave-one-out cross-validation, one observation is
omitted from the dataset and its value is predicted with
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Table 7: Localization results (dm3/cm2) at forestry centre level by 10-fold cross-validation with different variogram
models (Sph = spherical and Bes = Bessel followed by the number of neighbours in kriging), and regression model
localization (Loc) from Räty and Kangas (2008).

Centre N Sph20 Sph30 Sph40 Sph50 Sph60 Sph70 Sph80 Sph90 Sph100 Loc
0 455 0.1763 0.1046 0.1008 0.0984 0.0974 0.0975 0.0963 0.0954 0.0921 0.0968
1a 826 0.1499 0.1293 0.1101 0.1056 0.1051 0.1043 0.1043 0.1023 0.1012 0.1037
1b 723 0.1131 0.0941 0.0871 0.0828 0.0843 0.0811 0.0821 0.0815 0.0806 0.0817
2 2383 0.1618 0.1077 0.1009 0.0986 0.0975 0.0969 0.0953 0.0959 0.0946 0.1002
3 1221 0.1455 0.1188 0.1115 0.1105 0.1094 0.1095 0.1086 0.1080 0.1071 0.1060
4 1659 0.4865 0.1190 0.1114 0.1098 0.1066 0.1063 0.1057 0.1059 0.1053 0.1065
5 1622 0.1485 0.1172 0.1061 0.1047 0.1025 0.1017 0.0995 0.1000 0.0994 0.0989
6 2397 0.2028 0.1246 0.1196 0.1167 0.1156 0.1137 0.1127 0.1132 0.1126 0.1159
7 2197 0.1381 0.0969 0.0916 0.0879 0.0860 0.0846 0.0842 0.0830 0.0831 0.0832
8 1842 0.2999 0.1069 0.1007 0.1001 0.0985 0.0975 0.0969 0.0963 0.0962 0.1035
9 1606 0.1333 0.1130 0.1071 0.1041 0.1018 0.0999 0.1010 0.1006 0.1003 0.1040
10 2244 0.6138 0.1101 0.1062 0.1017 0.1007 0.0976 0.0980 0.0966 0.0958 0.0985
SEaggr 0.3136 0.1122 0.1058 0.1032 0.1016 0.1002 0.0996 0.0993 0.0987 0.1016
Centre Bes20 Bes30 Bes40 Bes50 Bes60 Bes70 Bes80 Bes90 Bes100 Loc
0 0.1247 0.1067 0.1020 0.0982 0.0976 0.0965 0.0954 0.0953 0.0945 0.0968
1a 0.1383 0.1151 0.1106 0.1058 0.1052 0.1049 0.1044 0.1032 0.1032 0.1037
1b 0.1059 0.0921 0.0856 0.0841 0.0828 0.0844 0.0816 0.0821 0.0812 0.0817
2 39.8974 0.1095 0.1022 0.0988 0.0964 0.0970 0.0959 0.0954 0.0944 0.1002
3 0.1499 0.1216 0.1131 0.1127 0.1112 0.1103 0.1086 0.1089 0.1077 0.1060
4 0.1472 0.1186 0.1117 0.1097 0.1065 0.1066 0.1063 0.1063 0.1050 0.1065
5 0.1486 0.1148 0.1078 0.1067 0.1027 0.1018 0.1001 0.0998 0.0997 0.0989
6 0.1584 0.1268 0.1210 0.1150 0.1135 0.1132 0.1131 0.1140 0.1117 0.1159
7 0.1206 0.0972 0.0904 0.0872 0.0847 0.0848 0.0835 0.0834 0.0837 0.0832
8 0.1336 0.1078 0.1015 0.0999 0.0983 0.0990 0.0980 0.0965 0.0958 0.1035
9 0.1485 0.1153 0.1058 0.1039 0.1028 0.1015 0.1018 0.1013 0.1007 0.1040
10 0.1436 0.1086 0.1045 0.1041 0.1009 0.0990 0.0987 0.0966 0.0960 0.0985
SEaggr 15.95 0.1126 0.1061 0.1034 0.1011 0.1007 0.1000 0.0996 0.0987 0.1016

kriging. In this case, we had 10-fold cross-validation in
which 10% of the population was omitted at time. In
other words, 90% of the data was used to predict each
observation. Since the data were divided randomly, the
resulting divisions should also have been irregular and
the neighbourhoods of the single points should not have
changed, i.e. the points should have had on average
90% of the original neighbours as the same distances
had before division. To judge the equality in divisions,
we accounted and compared the RMSPEs for every fold
included in the calculations. When the number of neigh-
bours increased, the variability in RMSPEs in the dif-
ferent folds decreased. Since the folds were similar, we
assumed that the division into 10 folds was neutral with
respect to the prediction.

We used regionally localized regression models as ref-
erences for the kriging estimates (Räty and Kangas,
2008). The regions were the forestry centres (Fig. 1b)
and the model (Eq. 1) was the same for every centre;

it was only re-fitted for every area separately. After re-
fitting, there was no regional bias in the local estimates.
Kriging, on the other hand, was not bounded to the sub-
areas, but the results were also reported by the forestry
centres. The bias in kriging estimates was below 1%
of the RMSPE of the forestry centres (Table 8). There-
fore, adding a local regional variable to KED would only
slightly improve the estimates.

In different forestry centres, different methods proved
to have the smallest RMSPE (Table 7). The forestry
centres could be classified as those in which kriging with
100 neighbours was the most efficient method (areas 0,
2, 4, 6, 8, 9, 10), those in which localization into the
forestry centre was better (3) or those in which the re-
sult was not dependent on the method selected (1a, b,
5, 7). For most of the study sub-areas, kriging was
more efficient or the methods performed equally well.
The only exception was forestry centre 3, where local-
ization was preferable. The proportion of Scots pine
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Table 8: Regional relative biases in estimates as percentages of RMSPE of the kriging estimate, Biasrel, at the
forestry centre.

Centre Sph20 Sph30 Sph40 Sph50 Sph60 Sph70 Sph80 Sph90 Sph100
0 4.7 -1.8 -0.7 0.7 -1.5 1.1 -0.8 -2.4 -1.3
1a 2.8 3.6 1.3 0.0 -0.7 -0.3 -0.5 -0.1 -1.2
1b 4.2 1.3 0.3 -0.4 0.3 -0.4 -1.2 0.3 0.1
2 2.0 0.9 1.2 1.2 0.7 1.1 0.7 1.1 1.7
3 -9.0 0.6 0.5 -0.6 -0.7 -0.1 0.0 0.7 0.1
4 0.8 2.3 1.8 1.1 2.2 1.3 1.2 1.3 1.6
5 -1.8 2.0 1.1 0.2 0.3 0.4 0.7 -0.4 -0.2
6 0.0 0.8 -0.3 -0.4 -1.2 -0.9 -0.7 -0.5 -0.6
7 -2.9 -0.6 1.4 0.2 0.4 0.6 0.3 0.1 -0.1
8 0.8 0.1 -0.7 0.3 -0.5 -1.7 -0.6 -0.7 -0.7
9 12.5 2.2 2.9 1.2 0.8 1.0 0.9 0.8 0.5
10 -0.2 2.0 1.2 0.9 -0.1 0.8 1.4 1.2 1.1
Centre Bes20 Bes30 Bes40 Bes50 Bes60 Bes70 Bes80 Bes90 Bes100
0 4.7 0.2 -1.7 0.4 -0.2 -0.1 0.1 -1.0 -0.9
1a 2.6 3.3 1.4 -0.7 0.8 -0.6 -1.7 -0.7 -1.7
1b 1.1 0.5 0.4 0.8 1.9 2.0 1.2 0.6 1.2
2 -2.1 0.5 0.4 -0.3 -0.5 -0.2 0.5 -0.5 -0.4
3 -0.1 -0.9 1.0 2.5 1.8 0.9 0.3 0.4 0.3
4 2.1 0.1 0.3 0.0 0.3 0.7 1.1 0.2 0.1
5 2.6 1.6 2.1 1.1 2.0 1.5 0.4 1.9 1.1
6 -1.8 0.7 0.7 0.8 0.3 0.3 0.3 0.1 0.1
7 2.6 2.7 0.5 -0.9 -0.9 -1.1 -1.0 -1.0 -0.9
8 1.0 -0.4 0.2 0.4 0.7 0.2 -0.2 0.7 0.3
9 3.3 0.7 0.5 -0.2 -1.1 -0.5 -0.2 -0.5 -1.6
10 0.1 1.8 2.2 1.5 0.2 1.4 0.4 0.9 0.6

forests in forestry centre 3 differed from that in other
forestry centres, comprising only 38% of the forested
land area (Fig. 1 in Korhonen et al., 2007), whereas in
other forestry centres the proportion was considerably
higher, varying from 47% to 78%. Also the distances to
the neighbours are among the largest (the minimum, me-
dian and mean distances are large even though the max-
imums are quite small, Table 3) and therefore the correc-
tion the neighbourhood provides is one of the smallest.

We based this study on previous results (Räty and
Kangas, 2007; 2008; 2010) and used here the same re-
gression model in KED to predict the form height of a
tree. KED is only one kriging method among others,
and comparing different methods and trend model de-
velopment for the kriging purpose, as Musio et al. (2004)
did, could have given more information to carry out the
prediction. To save computing capacity, we made two
restrictions: the kriging was limited to a local neighbour-
hood and the folds in cross-validation were increased to
10% of the total number of observations instead of one
observation. Limitation of the neighbourhood was rea-
sonable, since the idea was to use the closest neighbours

in prediction. However, the Bessel variogram model
weighted all observations in the study area, although the
weighting was only fractional beyond an effective range
and the prediction stabilized as the number of neigh-
bours increased. Kriging proved to be a better solution
than the regression model. However, it is possible that
using a more flexible model as a global model might
further improve the results. Thus, the next step could
be a comparison between kriging and nonparametric k-
nearest neighbours (k-NN) methods (e.g. Moeur and
Stage, 1995).

5 Conclusions

In conclusion, the method used (KED) in local neigh-
bourhoods shows promise in global model localization.
With universal kriging it was possible to obtain lower
MSPEs than with re-fitting the global model, both on
the study area wide and regional levels, although the
number of the neighbouring observation needed was
higher than the references. This may have been due to
the relatively low correlation of the pivot with the neigh-
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bours and sparse sampling design. The method could
be improved, e.g. by adding to the kriging informa-
tion on the other tree species in the neighbourhood. It
would also be interesting, though complicated, to study
a relationship between local ecological differences and
the modelling in the forestry centres. Since there were
forestry centres where the regional re-fitting of the global
model was better than the KED, combination of these
two methods is also feasible.
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