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THE ROLE OF MISCLASSIFICATION IN ESTIMATING
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Abstract. Dot grids are often used to estimate the proportion of land cover belonging to some class in an
aerial photograph. Interpreter misclassification is an often-ignored source of error in dot-grid sampling that
has the potential to significantly bias proportion estimates. For the case when the true class of items is
unknown, we present a maximum-likelihood estimator of misclassification probability based on agreement
between two interpreters. Two of the assumptions underlying the estimator are: (i) the probability that
an interpreter makes a misclassification is constant, (ii) both interpreters have the same probability of
misclassification. Simulation results suggest the estimator has acceptable performance when (ii) does
not hold. This estimator can be used to investigate whether bias due to misclassification has exceeded a
threshold, or to correct bias due misclassification.
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1 Introduction

Aerial photography has been used extensively as a tool
in natural resource assessments in a variety of ways, par-
ticularly in forestry. For example, aerial photography
has been used to assess the damage from pests such as
mountain pine beetle (White et al. 1983) and eastern
spruce budworm (Munson et al. 1985). Hansen (1985)
used linear transect sampling with airphotos to inven-
tory wooded strips in Kansas. More recently, Frescino
et al. (2006) used aerial imagery to assess forest resources
in Nevada. A dataset of forest canopy density across the
United States was developed by modeling the relation-
ship between interpreted airphotos and Landsat satellite
imagery (Huang et al. 2001).

For decades, airphotos played a vital role in forest in-
ventory programs (Loetsch and Haller 1964). The USDA
Forest Service Forest Inventory and Analysis program
photo-classified nearly 200,000 1-acre photo points into
forest land, unproductive forest, nonforest, and water
categories in support of the 1983 Wisconsin (USA) in-
ventory (Spencer et al. 1988). Forest inventory appli-
cations of airphotos include area estimation, stratifica-
tion, photo sampling, and map creation. With regard to
photo sampling, aerial photographs may be used in con-
junction with dot grids to estimate proportions of a fea-
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Figure 1: a sample dot grid with randomly located dots.

ture of interest. Historically, an interpreter would place
a transparent overlay with a regular or systematic dot
grid on top of an airphoto and assign dots to a category
of interest (e.g., tree/no tree or damaged/not damaged).
Proportions are simply the relative counts in each of the
categories divided by the total dot count. Dot grid meth-
ods have moved forward into the digital age, and tools
have been developed for use with digital aerial imagery
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(e.g., Clark et al. 2004, Lister et al. 2009) (Figure 1).
In addition to digital tools, natural resource practition-
ers now have access to an ever-increasing collection of
high-resolution imagery from the United States. The
USDA’s National Agriculture Imagery Program (NAIP)
has been collecting aerial imagery since 2003. A few
states are flown over and photographed each year, with
an approximate return interval of three years. Many
states have also acquired their own resource photogra-
phy, such as the New York State Digital Orthophoto
Program (NYSDOP) imagery, Pennsylvania’s PAMAP
imagery, and the New Jersey Department of Environ-
mental Protection (NJDEP) imagery.

While considerable work is being done in the area
of image segmentation and automated feature extrac-
tion for natural resource inventory and monitoring (e.g.,
Chubey et al. 2006, Smith et al. 2008, Laliberte et al.
2004), dot grids still represent an efficient method for
estimating proportions over large areas. The topics of
sample size (Gering and Bailey 1984) and sampling er-
ror (Bonnor 1974) for dot grids have been given con-
siderable attention. However, the error associated with
proportions estimated from dot grids arises from two
sources: sampling error and misclassification of individ-
ual dots. Considering only the binary case (tree/no tree,
damage/no damage), we discuss a mathematical model
of proportion estimates that includes misclassification
(Section 2), and then derive and discuss a possible es-
timator of misclassification probability as a function of
interpreter agreement (Section 3). Along with sampling
error, this estimate should provide a more realistic esti-
mate of total error in proportions as derived from inter-
preted data. While application to dot grids is intended,
the model applies more generically to any data an inter-
preter assigns to one of two classes.

2 The impact of misclassification

2.1 A mathematical model for misclassification
The effects of misclassification on a sample estimate of
a proportion have been described by Bross (1954). Sup-
pose that an estimate of the proportion of items in a
population that fall into some class C is desired, and
that p is the proportion of items in C in the population
with the rest being in class N . Suppose furthermore
that there is a θ probability of misclassification for each
item (in either class). Now, a sample of size n is drawn,
and the number of items, X, classified as C are counted.
A typical estimator of p, X/n (denoted X̄n), will be
biased. Its expected value is changed due to misclassifi-
cation such that

E(X̄n) = p − 2pθ + θ

This implies that the bias of the estimate is

E(X̄n) − p = −2pθ + θ (1)

Despite its bias, X̄n still follows a binomial distribu-
tion.

To give an idea of the magnitude of this bias in a con-
crete scenario, suppose that a photo interpreter classifies
dots in a dot grid as either falling on tree canopy (class
C) or not (class N), and misclassifies dots in both classes
5% of the time. In the notation of the previous section,
θ = 0.05. If this were the case, a population with a
true proportion in C of 20% would have E(X̄n) = 23%
- i.e., a 3% bias - and a population with 10% proportion
would have E(X̄n) = 14%. As these examples suggest,
the bias is drawing the estimator towards 50% because
there are more dots truly in class N , and therefore more
opportunities to misclassify class N dots as class C. This
example implies that if many proportions are estimated
with some misclassification each estimate would be bi-
ased toward 50% (from either direction). Importantly,
this is not a problem that would be “washed out” across
many populations. Whereas sampling error decreases as
a sample size increases, bias due to misclassification will
remain.

It should be noted that this model assumes that
the misclassification rate is identical for items in both
classes. In fact, Bross (1954) presents this model for the
more general case where the probability of misclassify-
ing items in class C is not necessarily the same as that
of misclassifying items in class N . The possibility of
developing the current work in this more general frame-
work is discussed later. Also, note that misclassification
is not the only potential source of bias. For example,
systematic sampling can result in a bias.

2.2 What can be done about bias due to mis-
classification? There is often no way to collect the in-
formation necessary to directly estimate misclassifica-
tion probabilities. We may never know the correctness
of an interpreter’s classifications, only his/her agreement
with those of another (fallible) interpreter. For example,
in the case of photo interpretation studies, it is likely in-
feasible to verify the correctness of classified dot grids
with in situ observations. To summarize the problem
with proportion estimates where misclassification prob-
abilities are non-zero but unknown, the estimates are
biased to an unknown and possibly large extent.

For the case when an estimate of the misclassification
probability θ is desired to correct the bias of X̄n, but the
true classes of the items classified by an interpreter are
unknown, we show there is information about misclassifi-
cation probabilities contained in the agreement between
interpreters on an individual item basis. In fact, the
following relationship holds:
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Figure 2: Interpreter agreement (α) as a function of mis-
classification probability (θ) and the correctness corre-
lation (ρ).

Result. Let α be the probability of agreement between
two interpreters, let θ denote the misclassification proba-
bility, and let ρ be the correlation between the correctness
of classifications made by the two interpreters (this value
is discussed below). Then,

α = θ2 + 2ρθ(1 − θ) + (1 − θ)2 (2)

This result is fully developed in the appendix, but
for now, a little explaining is in order, and a graphical
depiction of the relationship is presented in Figure 2.
This relationship states that agreement is a quadratic
function of misclassification probability. If the two in-
terpreters are either always right or always wrong, they
will always agree. What happens in every other case
depends on the correctness correlation, ρ. If the inter-
preters tend to misclassify the same items, ρ will be
positive. If one interpreter is more likely to correctly
classify the items misclassified by the other interpreter,
ρ will be negative. In a case where all interpreters have
received the same training and successfully follow the
same procedure in classifying items, it is expected that
ρ will be non-negative. The two interpreters may have
a difficult time classifying certain types of items, and
the interpreters should be using the same strategies to
classify items that are not immediately obvious. Note
that, if ρ is zero, knowing that the first interpreter mis-
classified an item offers no information about whether or
not the second interpreter misclassified that item. Using
the above relationship, we can use observed agreement
between interpreters to say something useful about mis-

classification, and, subsequently, the bias of estimated
proportions.

3 Estimating a misclassification prob-

ability

3.1 Statement of the estimator Suppose that two
fallible interpreters classify items as belonging to one
of two classes, but that the true class of the items is
unknown. With a few assumptions, it is possible to get
an estimate of their misclassification probability based
on paired classifications made by the interpreters, and to
calculate the asymptotic variance of this estimate. Note
that the individual paired classifications made by the
interpreters must be known for each item, and not just
the total number of items in the population classified
as belonging to each class by the interpreters. A formal
statement of the following theorem and a proof are given
in the appendix. Also, the more general case where ρ ∈
(−1, 1) is considered in the appendix.

Theorem. Suppose that two interpreters classify n
different items, and that A1,A2, . . . ,An are observed
where Ai = 1 if the interpreters agree on item i, and
Ai = 0 otherwise, for i = 1, . . . , n. Suppose also that
the following assumptions hold,

(A1) the classifications for each item made by an inter-
preter are independent and have the same misclas-
sification probability.

(A2) the classifications made by both interpreters have
a θ probability of misclassification.

(A3) θ < 1
2 .

(A4) ρ = 0.

then, if we define Ān = 1
n

∑n
i=1 Ai,

θ̂ =
1
2
−
√

2Ān − 1
4

(3)

is the maximum likelihood estimator of θ, and is nor-
mally distributed with mean θ and variance α(1−α)

4n(2α−1) as

n → ∞. If an estimate of the asymptotic variance of θ̂ is
desired, it is recommended that the maximum likelihood
estimate of α, Ān, be used in place of α.

3.2 Discussion of assumptions There is one prob-
lematic assumption underlying this estimator. (A1) is
fulfilled if the correctness of an interpreter’s classifica-
tions are like a series of coin flips: different classifications
do not influence each other and the probability of mis-
classification is the same each time. The first part of this
assumption (independence) is realistic. If an interpreter
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uses the same procedure to classify each dot, it seems
reasonable to believe that the misclassification probabil-
ity for an item will depend only on characteristics of that
item, and not, for example, on how difficult to classify
the previous item was or how many items the interpreter
has classified. The assumption of a constant probability
could be unrealistic, though. For example, if interpreters
are classifying dots from a dot grid as landing on tree
cover or not, misclassification probabilities could differ
depending on where a dot is located in the image. It
may be more likely that misclassification will occur in
sparse forest than in dense forest or an open area. (A2)
is not very realistic, but simulation suggests that, if the
two interpreters have different misclassification probabil-
ities, θ̂ is an estimator of their average misclassification
probability. These results are presented shortly. (A3)
only requires that the interpreters are classifying at least
half of the items correctly. (A4) seems problematic at
first. However, recall the scenario described above un-
der which ρ would be expected to be positive (Section
2.2): the two interpreters are more likely to misclassify
some items than others. Given (A1), this cannot occur,
and, as long as the interpreters are working separately,
it is difficult to imagine another scenario under which ρ
would be non-zero.

3.2.1 Simulation study of (A2) Assumption (A2)
states that both interpreters have the same misclassifi-
cation probability. This assumption will certainly never
be exactly true. Therefore, a simulation study was con-
ducted to determine the behavior of θ̂ under a variety of
scenarios.

First, a population was defined to have either 5%,
20%, or 50% of the items in category C. Classifications
of these items by two fallible interpreters were simulated
with a correctness correlation of zero. The first inter-
preter always had a 5% misclassification while the second
interpreter had either a 3%, 7%, 9%, or 15% misclassifi-
cation probability. Then, 10000 samples of size 100 were
drawn from this population.

95% confidence intervals were calculated in each sam-
ple. Figure 3 and Figure 4 present histograms of θ̂ and
the estimated SE(θ̂), respectively, from the population
with 50% of the items in class C. Note that, in Figure 4,
the sample standard deviations of the estimates are de-
picted. The sample standard deviation is measuring the
variation of θ̂ that actually occurred in the simulation.
Thus, it can be considered a target value for estimated
standard errors. Table 1 shows numerical results from
each population.

This simulation study suggests that, when the misclas-
sification probabilities of two interpreters differs, θ̂ be-
haves approximately as if it were estimating the misclas-
sification probability of two other interpreters who both

Table 1: Simulation results. p is the true proportion
of items in class C; θ2 is the misclassification probabil-
ity of the second interpreter (θ1 = 0.05 always); θAV E

is the average misclassification probability between the
two interpreters; μθ̂ is the mean observed θ̂; sd(θ̂) is
the sample standard deviation of the simulated misclas-
sificaion probability estimates; μSE(θ̂) is the mean ob-

served SE(θ̂); coverage is the proportion of times that
a 95% CI covered θAV E .

p θ2 θAV E μθ̂ sd(θ̂) μSE(θ̂) coverage

0.05 0.03 0.04 0.04 0.015 0.014 0.95
0.07 0.06 0.061 0.018 0.018 0.94
0.09 0.07 0.071 0.02 0.02 0.95
0.15 0.1 0.104 0.025 0.025 0.95

0.2 0.03 0.04 0.04 0.015 0.014 0.95
0.07 0.06 0.06 0.018 0.018 0.94
0.09 0.07 0.071 0.02 0.02 0.95
0.15 0.1 0.104 0.025 0.025 0.96

0.5 0.03 0.04 0.04 0.015 0.014 0.95
0.07 0.06 0.06 0.018 0.018 0.93
0.09 0.07 0.071 0.02 0.02 0.95
0.15 0.1 0.104 0.025 0.025 0.96

had the average misclassification of the first two. Esti-
mates tend to be slightly inflated (less than 1%) when
the second interpreter has a 15% misclassification proba-
bility. Note also that, although the theoretical standard
error, SE(θ̂), is asymptotic (its behavior is known only
as n → ∞), the observed coverage probabilities suggest
that the estimated standard error is performing well at
this sample size.

4 Discussion

4.1 Usefulness of θ̂ Any study that produces pro-
portion estimates based on fallible classifications and
states the precision of its estimates should try to account
for misclassification. If misclassification probabilities are
not known and proportion estimates are reported as if
they were unbiased, they have the potential to be very
misleading. Such a study could utilize θ̂ in at least two
different ways.

First, a tolerance level for bias due to misclassification
could be established, and θ̂ used to detect misclassifica-
tion probabilities which correspond to biases that exceed
the tolerance level (see Equation (1)). Second, θ̂ could
be calculated for some pair of interpreters, and then any
proportion estimate produced by these interpreters in
the future could have its bias corrected. Specifically, if
the bias corresponding to the observed θ̂ was subtracted
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Figure 3: Histograms of misclassification estimates, θ̂. θ1 = 0.05 and p = 0.5 in each histogram. The thick vertical
line represents the average misclassification rate.

from a proportion estimate, that estimate’s bias due to
misclassification would be corrected.

The largest problem with using θ̂ in either of these
ways is the requirement that the misclassification prob-
ability for each item is identical. A substantial deviation
from this assumption would likely be associated with a
deviation from the assumption that ρ is equal to zero.

4.2 Future work In this paper, the case was consid-
ered where the probability of misclassification was con-
stant across items classified by an interpreter, which may
not be a realistic scenario. It may be helpful to consider
two ways in which this assumption may be broken: (i)
classification may have a difficulty level that varies for
each item, and (ii) the probability of misclassification
of items in class C may be different from those in class
N . For (i), a more realistic model could be developed
if a hierarchical model is used. Specifically, the proba-

bility of misclassification itself could perhaps be treated
as a random variable that is bounded between zero and
one. The target value for estimation would then be the
mean misclassification probability. The case (ii) may be
more difficult if it is necessary to estimate the misclassifi-
cation probability for both classes. This difficulty arises
because, for any given classification, the true class of the
item is unknown. Hence, it would be unknown whether
agreement on this classification was providing informa-
tion about the misclassification probability of items in
class C or items in class N .
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APPENDICES

More formal notation will be used in the Appendix in
order show results concisely. Also, results will be derived
for the more general condition where ρ ∈ (−1, 1). The
theorem from the body of the paper considers the special
case where ρ = 0.

A Relationship between agreement,

misclassification, and conditional

correlation

Result. Suppose that X1 and X2 are binary random
variables, such that P(X1 = 1) = P(X2 = 1) =
1 − θ. Also, suppose that P(X1 = X2) = α and that
Cor(X1, X2) = ρ. Then,

α = θ2 + 2ρθ(1 − θ) + (1 − θ)2 (3)

Proof. Note that, for any random event A,

P(A) = E(I(A))

Then,

α = P(X1 = 1 ∩ X2 = 1) + P(X1 = 0 ∩ X2 = 0)
= E(I(X1 = 1)I(X2 = 1)) + E(I(X1 = 0)I(X2 = 0))
= E(X1X2) + E(I(X1 = 0)I(X2 = 0))

Now,

E(X1X2) = Cov(X1, X2) + E(X1)E(X2)

and
Cov(X1, X2) = ρ

√
V(X1)V(X2)

Now, note that E(Xi) = 1− θ and V(Xi) = θ(1− θ) for
i = 1, 2. Thus,

E(X1X2) = ρθ(1 − θ) + (1 − θ)2

Then,

E(I(X1 = 0)I(X2 = 0)) = Cov(I(X1 = 0), I(X2 = 0))
+ E(I(X1 = 0))E(I(X2 = 0))

and since E(I(Xi = 0)) = θ and V(I(Xi = 0)) = θ(1−θ)
for i = 1, 2, we see that

E(I(X1 = 0)I(X2 = 0)) = δθ(1 − θ) + θ2

where δ is the correlation between the incorrectness of
X1 and X2. At this point, all that remains is to show
that ρ = δ. Note that, if

Cov(X1, X2) = Cov(I(X1 = 0), I(X2 = 0))

then, ρ = δ. So,

Cov(X1, X2) = Cov(1 − I(X1 = 0), 1− I(X2 = 0))
= Cov(−I(X1 = 0),−I(X2 = 0))
= Cov(I(X1 = 0), I(X2 = 0))
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B Derivation of the estimator

Theorem. Let X11, . . . ,Xn1 and X12, . . . ,Xn2 be ran-
dom variables such that Xij represents the correctness
interpreter i’s classification of the jth item. Denote
P(Xij = 0) = θij for i = 1, . . . , n and j = 1, 2. Finally,
set Ai = 1 where Xi1 = Xi2 and Ai = 0 otherwise, and
denote αi = P(Ai = 1) for i = 1, . . . , n. Now, suppose
the following assumptions are met:

(A1) (X11, X12), . . . , (Xn1, Xn2) are independent and
θ1j = . . . = θnj = θj when j = 1 or 2.

(A2) θ1 = θ2 = θ.

(A3) θ < 1
2 .

Then, if we denote α̂ = 1
n

∑n
i=1 Ai,

θ̂ =
1
2
−
√

2α̂ − 1 − ρ

4(1 − ρ)
(4)

is the maximum likelihood estimator of θ, and
is normally distributed with mean θ and variance

α(1−α)
4n(2α−1−ρ)(1−ρ)

as n → ∞ where Cor(Xi1, Xi2) = ρ

for i = 1, . . . , n.
Note: if an estimate of the asymptotic variance of θ̂ is

desired, it is recommended that the maximum likelihood
estimate of α, Ān, be used in place of α.

Proof. This proof will proceed in two parts. Part 1
explores the relationship between θ, α, and ρ. In Part
2, the properties of α̂ and θ̂ will be derived.

Part 1. Let ρ be defined as above, and apply (A1)
and (A2). Then, the previous result supplies the follow-
ing starting point,

α = αi

= θ2 + 2ρθ(1 − θ) + (1 − θ)2

= θ(1 − θ)(2ρ − 2) + 1
α − 1

2(ρ − 1)
= θ(1 − θ)

Recognizing a quadratic function of θ, we complete the
square and write

(θ − 1
2
)2 =

1
4
− α − 1

2(ρ− 1)

θ =
1
2
±
√

2α − 1 − ρ

4(1 − ρ)

θ =
1
2
−
√

2α − 1 − ρ

4(1 − ρ)

where the last step is supplied by assumption (A3).
Note that, if θ is required to be a real number between
zero and 1

2 , then we must have an α such that

0 <
1 − α

2(1 − ρ)
<

1
4

When ρ is zero (the special case considered in estimating
θ), this amounts to having α between 1

2 and one. For
increasing values of ρ (larger than zero), α is forced to
be increasingly close to one.

Part 2. Note that A1, . . . ,An, are independent
(this follows from (A1)), and have the same probability
distribution, i.e. P(Ai = 1) = α, P(Ai = 0) = 1 − α for
i = 1, . . . , n. This implies that they are distributed as
Bernoulli random variables. Hence, the maximum like-
lihood estimator of α is α̂ = 1

n

∑n
i=1 Ai, and, by the

Central Limit Theorem, it converges in distribution to
a Normal random variable with mean α, and variance
α(1− α).

Now, for a fixed ρ, note that θ is a one-to-one function
of α when θ is assumed to be less than 1

2
. The invariance

property of maximum likelihood estimators states that,
if τ̂ is the maximum likelihood estimator of τ and if
g is a one-to-one function, then g(τ̂ ) is the maximum
likelihood estimator of g(τ ).

Therefore, the maximum likelihood estimator of θ is

θ̂ =
1
2
−
√

2α̂− 1 − ρ

4(1 − ρ)

Furthermore, the delta method can be used to de-
termine the asymptotic distribution of θ̂ (Casella and
Berger 2002). First, note that θ̂ can be expressed as a
differentiable function h of α̂ where

h′(α̂) = − 1
4(1 − ρ)

(
2α̂− 1 − ρ

4(1 − ρ)

)− 1
2

This derivative will be nonzero when the assumptions
of the estimator are fulfilled. Therefore, as n → ∞, θ̂
will converge in distribution to a normal random variable
with mean θ, and variance

(
h′(α)

√
α(1 − α)

n

)2

=

[
− 1

4(1 − ρ)

(
2α − 1 − ρ

4(1 − ρ)

)− 1
2
]2

×
(

α(1 − α)
n

)

=
α(1 − α)

4n(2α − 1 − ρ)(1 − ρ)

�

mailto://plzimmerman@fs.fed.us
http://mcfns.com

	1 Introduction
	2 The impact of misclassification
	2.1 A mathematical model for misclassification
	2.2 What can be done about bias due to misclassification?

	3 Estimating a misclassification probability
	3.1 Statement of the estimator
	3.2 Discussion of assumptions
	3.2.1 Simulation study of (A2)


	4 Discussion
	4.1 Usefulness of 
	4.2 Future work

	5 Acknowledgments
	A Relationship between agreement, misclassification, and conditional correlation
	B Derivation of the estimator

