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A MONTE CARLO METHODOLOGY FOR SOLVING THE

OPTIMAL TIMBER HARVEST PROBLEM WITH STOCHASTIC

TIMBER AND CARBON PRICES
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Abstract. This article presents a Monte Carlo methodology for solving the stochastic optimal timber
harvest problem modeled as a recurrent American call option. A detailed description of the proposed
methodology is given, and the Monte Carlo technique is contrasted with finite difference methods
typically used to find solutions of the optimal harvest problem with stochastic prices. The use of
the methodology is then demonstrated via an example. In the example, expected bare land values
and optimal harvest policies are calculated for a Douglas-fir stand in western Washington State. It is
assumed that the forest owner derives revenue from traditional timber sales and carbon sequestration, and
that prices of timber and carbon follow a known stochastic process. Results of the calculations are discussed.
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1 Introduction

The optimal harvest problem is of fundamental impor-
tance to forest economics and has been studied exten-
sively for many years. A rich body of literature exists on
determining the optimal harvest age and value of a for-
est stand under different conditions. Traditionally, the
analysis has been performed under the assumption that
prices of timber are known and do not change over time.
However, since the 1970’s, some researchers have been
focusing their attention on the optimal harvest problem
with stochastic timber prices.

One of the earliest articles to analyze the impact of
stochastic timber prices on stand values and rotation
lengths was presented by Norstrom 1975. This work was
followed by other articles, for example those by Kaya
and Buongiorno 1987 and Lohmander 1987. Arguments
for an explicit treatment of stochastic timber prices and
a review of existing literature were presented by New-
man 1988, and many additional articles were published
in the following decade. Among these were the articles
by Morck et al. 1989, Haight 1993, and Plantinga 1998.
A review of the existing literature on forest manage-
ment in the presence of risk and uncertainty was given
by Brazee and Newman 1999.

The articles by Morck et al. 1989 and Plantinga 1998
were two among several that analyzed the stochastic op-
timal harvest problem using real options methodology,

an approach that applies ideas originally introduced in
financial economics to the valuation and optimal man-
agement of real assets under uncertainty.1 Two more
recent examples characteristic of the use of the real op-
tions methodology in forest economics are the articles by
Insley 2002 and Insley and Rollins 2005, who modeled
the single and multi-rotation stochastic optimal harvest
problems as American call options, a type of contract
that gives its holder the right, but not the obligation, to
harvest a forest stand at a given age. (For an introduc-
tion to options see, for example, the text by Hull 2003).
Another recent example of a real options approach to
risk management in forestry is provided by an article by
Chladna 2007, who analyzed a stand management sce-
nario where the forest owner receives revenue not only
from timber but also from carbon emission permits.

Application of real option methodology to the stochas-
tic optimal harvest problem typically yields a partial dif-
ferential equation that must be solved numerically sub-
ject to a set of conditions in space and time. Tradition-
ally, the numerical solution techniques used in option
valuation have employed finite difference schemes. The
article by Insley and Rollins 2005 is perhaps the best
example of this approach. Chladna 2007 did not specify
the details of the methodology actually used to obtain
the results of her study, but the partial differential equa-

1A thorough introduction to real options can be found in the
texts by Dixit and Pindyck 1994, and Trigeorgis 1996.
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tions that she derived could also be solved with finite
difference schemes.

Finite difference methods are not the only methodol-
ogy that can be employed in the valuation of real op-
tions. As discussed, for example, by Glasserman 2004,
a viable alternative is provided by algorithms based on
Monte Carlo methods. From a theoretical perspective,
the two approaches are equivalent in their ability to cal-
culate option values. However, in the variety of problems
considered in practical applications, some are more eas-
ily solved with a finite difference scheme, while a Monte
Carlo algorithm is a preferable choice for others.

The goals of this article are twofold. First, a Monte
Carlo algorithm capable of solving the multiple rota-
tion optimal harvest problem with two sources of uncer-
tainty is presented. The algorithm is an adaptation of
the method introduced by Ibáñez and Zapatero 2004 for
the valuation of financial American options, with modi-
fications that extend the original method to infinite time
horizons and multiple rotations. Second, the use of the
extended algorithm is illustrated in a practical setting.
The algorithm is used, in a scenario similar to that ana-
lyzed by Chladna 2007, to determine the value and op-
timal harvest schedule for a Douglas-fir site in western
Washington State, under the assumption that the tra-
ditional income from timber sales is supplemented by
income from carbon sequestration.

The article is organized as follows. The logic of the re-
cursive Monte Carlo method employed throughout the
article is first introduced in Section 2 for the simplest
case of a single-rotation, optimal harvest problem with
stochastic timber prices. Section 3 introduces the case
with N > 1 rotations and the modifications that are re-
quired before the method can be used to calculate bare
land values and optimal timings in a multi-rotation set-
ting. This is followed in Section 4 by a presentation of
the multi-rotation method in the context of a stochas-
tic optimal harvest problem with two sources of uncer-
tainty. Finally, in Section 5, the two-dimensional, multi-
rotation version of the method is applied to an illustra-
tive problem, and the solution is presented and discussed
in Section 6.

2 Wicksellian Harvest Problem and
Monte Carlo

As discussed, for example, by Plantinga 1998 and In-
sley 2002, the optimal timber harvest problem can be
formulated as an American-style real option. The option
formulation allows for the explicit treatment of stochas-
tic timber prices, and it leads to harvest problem solu-
tions in the form of expected bare land values and asso-
ciated optimal harvest boundaries. These solutions are
typically obtained with the use of various finite difference

methods. However, algorithms based on Monte Carlo
methodology provide a flexible alternative for calculat-
ing option values, of particular use in fields such as forest
management, where the options of interest are charac-
terized by multiple sources of uncertainty and complex
payoffs and optimal harvest policies.

The Wicksellian (i.e., single rotation) optimal harvest
problem with stochastic timber prices can be thought
of as an American call option on the value of timber.
It is particularly amenable to solution by Monte Carlo
simulation, because it can be posed as the expectation
maximization problem

π(S0 , C) = sup
τ∗∈R+

E[dτ∗
0 Qτ∗ (Sτ∗ − C)+|S0, C] , (1)

where π(S0 , C) stands for the expected discounted value
of a harvest that will take place at a future date for
given values of harvest cost C and starting price S0,
the supremum is taken over the harvesting times that
assume values in the set of positive reals R+, τ∗ is the
optimal harvest time, E[·|·] represents the conditional ex-
pectation operator, dτ∗

0 is the discount factor from time
τ∗ to present, Qτ∗ denotes the timber volume specified
by the yield function Qt at the optimal harvest time
τ∗, and Sτ∗ denotes the stochastic price of timber per
unit volume. The term (Sτ∗ − C)+ = max[Sτ∗ − C, 0]
and indicates that the stand is never harvested in peri-
ods when harvest cost exceeds timber price. Equation 1
states that in order to maximize the profit from a sin-
gle harvest, a forest owner must maximize the expected
discounted harvest profit by selecting harvest time in
response to price fluctuations.

The expected present value of harvest π(S0, C) in
Equation 1 can be approximated by a Monte Carlo al-
gorithm introduced by Ibáñez and Zapatero 2004. As
is the case with all American-style options, the algo-
rithm produces a solution that consists of both the op-
tion value π(S0, C) and the associated optimal harvest
boundary Bt, which determines the minimum harvest
price at which the stand should be harvested.

Several assumptions must be made before the Ibáñez
and Zapatero 2004 algorithm can be applied to the single
rotation optimal harvest problem with stochastic tim-
ber prices. The first of these assumptions concerns the
treatment of time. Although time is assumed to be con-
tinuous in Problem 1, it is treated as discrete in the
presentation that follows. The switch from continuous
to discrete time is necessitated by the properties of the
Ibáñez and Zapatero algorithm. It is also a realistic rep-
resentation of the decisions made by forest owners, who
may not be able to harvest a stand at all times due to,
for example, high fire risk or extreme cold. The yield
function Qt is assumed to be a known and determinis-
tic function of time. Similarly, the discount factor dτ

0 is
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also assumed to be known with certainty for any value
τ∗. The harvest cost C is known and constant over time.
Finally, timber prices follow a diffusion process (see, for
example, the text by Iacus ?) whose dynamics can be
described by the stochastic differential equation

dSt = b(t, St) dt + σ(t, St) dWt , (2)

where b(t, St) represents the deterministic drift coeffi-
cient, σ(t, St) represents the volatility coefficient, and
dWt is an increment of the Wiener process. Equation 2
can be discretized, or in some cases solved analytically,
and used to generate price paths used by the valuation
algorithm.

Because the Ibáñez and Zapatero algorithm relies on
backward recursion, it is necessary to set an upper time
limit T on the value of τ∗ before the method can be
applied to the infinite horizon Problem 1. The choice
of T is determined as a tradeoff between minimiza-
tion of the error caused by the truncation on the one
hand, and computational cost on the other. For a given
value of T , the time horizon is divided into an arbitrar-
ily large number of time intervals, and it is assumed
that the stand can only be harvested at the values of
t ∈ {0, 1, 2, . . . , T − 1, T} separating these intervals.

Ibáñez and Zapatero showed that once the optimal
harvest boundary Bt is known at each t ∈ {0, 1, . . . , T},
the option value π(S0, C) given in Equation 1 can be
approximated by the Monte Carlo simulation

π(S0, C) ≈ 1
M

L∑

i=1

dτ∗
0 Qτ∗(Si

τ∗ − C)

+
1
M

K∑

j=1

dT
0 QT (Sj

T − C)+ ,

(3)

where τ∗ denotes the first time in {0, 1, . . . , T} such that
Si

τ∗ ≥ Bτ∗ – that is, the first time a simulated price path
i exceeds the optimal harvest boundary. In Simulation 3,
M = K + L represents the total number of price paths
simulated from Equation 2, L represents the number of
price paths that induced harvesting at times τ∗ < T , K
is the number of price paths where τ∗ = T , dT

0 represents
the discount factor from T to 0, Sj

T is the value of jth

price path at time T , and all other terms are defined as
above.

Figure 1 provides a simple illustration that highlights
the key characteristics of Simulation 3. In Figure 1,
starting price S0 = 400, harvest cost C = 80, and upper
time limit T = 25. Price Path 1 crosses the optimal
harvest boundary Bτ∗ at τ∗ = 10 and contributes to the
first sum of Simulation 3. Price Paths 2 and 3 contribute
to the second sum, because τ∗ = 25 in both cases. The
terminal value of Price Path 3, S3

25, is below the harvest
cost, and a rational forest owner would leave the stand

5 10 15 20 25

0
20

0
40

0
60

0
80

0
10

00

Time
P

ric
e

Optimal Harvest Boundary
Harvest Cost
Price Path 1
Price Path 2
Price Path 3

Figure 1: Monte Carlo procedure for calculating the av-
erage discounted value of a single rotation harvest con-
tract.

unharvested under that price scenario. Hence, the con-
tribution of Price Path 3 to the value of π(S0, C) is equal
to zero.

The implementation of Simulation 3 proceeds as fol-
lows. First, the price model of Equation 2 is used to
simulate M price paths. For the L price paths that cross
the boundary Bt at a τ∗ < T , the profit from immedi-
ate harvest at τ∗ is recorded. For the K price paths
that reach T without crossing Bt, the time T harvest
profit is recorded, if positive. If it is negative, its value
is recorded as zero. All profit values are then appropri-
ately discounted to time zero, and the estimate of the
option value π(S0, C) is calculated as their average.

The optimal harvest boundary Bt can be recovered by
using Simulation 3 recursively. Because the stand value
at the terminal time T can be calculated as QT (ST −
C)+, the first point where Bt has to be calculated is
t = T − 1. This boundary point is calculated by finding
the price of timber, S∗

T−1, at which

QT−1(S∗
T−1 − C)+ =

E[dT
T−1QT (ST − C)+|S∗

T−1, C] ,
(4)

that is, the price where the value of immediate harvest
is exactly equal to the expected discounted value of har-
vesting at time T . Thus, from a computational perspec-
tive, finding the value of the optimal harvest boundary
at time T − 1 is a root-finding problem in S∗

T−1, and
the calculation yields BT−1 = S∗

T−1. For a given value
of ST−1, the value of immediate harvest at time T − 1,
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on the left side of Equation 4, is easily calculated, be-
cause all necessary quantities are known at T − 1. The
expected value of delayed harvest on the right side of
Equation 4 can be approximated by the simulation

E[dT
T−1QT (ST − C)+|ST−1] ≈
1
M

M∑

i=1

dT
T−1QT (Si

T − C)+ ,
(5)

the average of discounted profit values from harvesting
at time T . This simple approximation of the expectation
term is possible because during the short time interval
(T − 1, T ), it is assumed that the stand cannot be har-
vested and, hence, the optimal harvest boundary need
not be used.

With BT−1 known, a step is taken back in time to
t = T − 2, and the process is repeated for BT−2. The
value of immediate harvest at time T − 2, on the left of
Equation 4, is compared to the expected value of delayed
harvest. Because harvest is now possible not only at
t = T but also at t = T − 1, the simple Simulation 5
cannot be used this time around, and the time T − 2
expectation must approximated with

π(ST−2, C) ≈ 1
M

L∑

i=1

dτ∗
T−2QT (Si

τ∗ − C)

+
1
M

K∑

j=1

dT
T−2QT (Sj

T − C)+ ,

(6)

with τ∗ = T − 1 and the optimal harvest boundary
specified by BT−1 = S∗

τ∗ . Note that Simulation 6 is
a special case of Simulation 3, implemented for τ∗ ∈
{T − 2, T − 1, T} and the starting value of timber price
set equal to ST−2.

The value of the optimal harvest boundary at times
T − 3, T − 4, . . .1, 0 is calculated through similar steps,
each time utilizing the knowledge of Bt acquired at
previous time points. Once the entire boundary Bt is
known, it can be used to approximate the option value
as described in Simulation 3.

3 Multiple Rotations

The Ibáñez and Zapatero algorithm described in the
preceding section provides an effective tool for solving
the single rotation stochastic optimal harvest problem
with the substitution of harvest cost for the strike price
and the introduction of Qt. However, it cannot be ap-
plied to the more relevant multi-rotation optimal har-
vest problem without further modifications. This section
presents the changes that must be made to the algorithm
in order to apply it to the multi-rotation optimal harvest
problem with stochastic timber prices.

The extended algorithm consists of several steps.
First, it is necessary to determine N , the number of
rotations that will be considered in the calculations. Al-
though there is no theoretical limit on the value of N ,
computational considerations dictate that N be finite.
Hence, N must be determined empirically, as a tradeoff
between accuracy and computational cost.

For a given value of N , the multi-rotation method
starts at the N th rotation and proceeds backward
through the rotations until the first rotation is reached.
First, estimates of πN(S0 , C), the value of the N th ro-
tation, as well as the corresponding optimal harvest
boundary BN

t are calculated for a set of initial timber
prices S0 with the method presented in the preceding
section. The calculated values of πN (S0, C) are then
interpolated to provide an estimate of

fN (S0|C, r, b(t, St), σ(t, St), . . .) ≈ πN (S0, C) , (7)

the N th harvest value as a function of the starting price
of timber S0 for given values of harvest cost C, discount
rate r, drift coefficient b(t, St), volatility σ(t, St), and all
other relevant quantities.

In the next step, the value of πN−1(S0, C), the second-
to-last harvest, is calculated together with its associated
optimal harvest boundary function BN−1

t . In the bound-
ary calculations, the root-finding procedure of Equa-
tion 4 is modified by incorporating the discounted value
of the N th harvest as estimated by Approximation 7.
For a given stand age t, the value of the optimal harvest
boundary BN−1

t is given by the root of the equation

Qt−1(S∗
t−1 − C)+ + fN (S∗

t−1|·) =

E[dt
t−1{Qt(St − C)+ + fN (St|·)}|S∗

t−1, C] .
(8)

Equation 8 states that at any point t on the optimal
harvest boundary for the N − 1th rotation, BN−1

t , the
sum of profit from harvesting at time t − 1 and the ex-
pected discounted value of the N th harvest, fN (St|·),
must equal the expected discounted value of the equiv-
alent sum for time t.

Analogous changes are made to the contract valuation
procedure of Simulation 3 in order to introduce the im-
pact of the N th rotation. At harvest time, the forest
owner now receives not only the value of N − 1th har-
vest but also the expected discounted value of the final,
N th, harvest approximated by

πN−1(S0, C) ≈
1
M

L∑

i=1

dτ∗
0 {Qτ∗(Si

τ∗ − C) + fN (Si
τ∗ |·)}

+
1
M

K∑

j=1

dT
0 {QT (Sj

T − C)+ + fN (Sj
T |·)} .

(9)
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Equation 8 and Simulation 9 are used recursively to
recover the entire length of the optimal harvest bound-
ary BN−1

t for the N −1th rotation, which is then used to
calculate the combined value of the last two harvests for
a set of starting values of timber price S0. The results
are interpolated to provide

fN−1(S0|C, r, b(t, St), σ(t, St), . . .) ≈ πN−1(S0, C) ,
(10)

an estimate of the combined value of the N − 1th and
N th harvests as a function of initial timber price.

In the next step, the expression on the left of Approx-
imation 10 is substituted in place of fN (·) in Equation 8
and Simulation 9. The revised relations are then used
to obtain the optimal harvest boundary BN−2

t for the
N − 2nd rotation and the corresponding estimate of the
combined value of the last three harvests, fN−2(S0 |·) as
a function of starting timber price.

The procedure described above is repeated until the
first rotation is reached. The optimal harvest bound-
ary for the first rotation B1

t is recovered with the use
f2(S0 |·), the estimate of the combined expected dis-
counted value of N −1 future rotations, and can be used
to calculate

f1(S0|C, r, b(t, St), σ(t, St), . . .) ≈ π1(S0, C) , (11)

the expected bare land value as a function of the current
timber price.

As the value of the number of rotations N increases,
the expression on the left of Approximation 11 provides
an ever more accurate estimate of the solution to the
infinite-rotation optimal harvest problem with stochas-
tic timber prices. Thus, the methodology described in
this section provides a Monte-Carlo counterpart to the
finite-difference methodology typically used to solve this
problem, for example as demonstrated by Insley and
Rollins 2005.

4 Second Risk Source

One of the strengths of the original Ibáñez and Zap-
atero algorithm is its ability to solve problems charac-
terized by the presence of multiple risk sources. This
property is retained by the multi-rotation version intro-
duced in Section 3.

In addition to stochastic timber prices, there are many
other sources of risk that could be included in the for-
mulation of the optimal timber harvest problem. These
include, for example, stochastic discount rate r, yield
function Qt, and harvest cost C. Another potentially
significant source of risk can be introduced via the price
of carbon emission permits. Forests act as carbon sinks,
and the ability to sequester carbon could put forest
owners in a position to act as suppliers of permits in

the carbon emission markets. This section details the
steps necessary to apply the multi-rotation algorithm to
a two-dimensional stochastic optimal harvest problem
with stochastic timber and carbon prices.

Under the carbon accounting system assumed in this
article, each year a forest stand goes unharvested, its
owner receives sequestration credit for the additional
volume of carbon the stand has absorbed. This credit
can then be sold in the carbon emissions market. The
resulting cashflow

CF t
U = γ Δ Qt Ut (12)

is received by a forest owner who decides not to har-
vest at time t. In Equation 12, γ represents a factor for
converting atmospheric CO2, measured in metric tons,
to carbon sequestered in the forest stand and measured
in thousand board feet, MBF; Δ Qt represents the addi-
tional volume of timber accumulated in the forest stand
over the period from time t− 1 to time t; and Ut stands
for the price of CO2 emissions per metric ton at time t.

If the owner decides to harvest the stand at t, the
cashflow from immediate harvest, CF t

S, is calculated as

CF t
S = Qt(St − α γ Ut − C)+, (13)

where α represents the percentage of carbon sequestered
in the stand that is released at harvest time and all other
parameters are as defined above. Equation 13 implies
that a stand harvest is to be treated as a carbon source,
and the term αγ Ut represents the cost of the carbon
emission permits the forest owner must purchase at har-
vest time.

In the univariate stochastic harvest problem of Sec-
tion 3, the optimal harvest boundary B1

t is formed by a
single curve. For a given stand age t where harvesting is
possible, there exists a unique threshold timber price S∗

t

above which the stand should be harvested immediately.
In the problem with two sources of risk, the optimal har-
vest boundary consists of two sets of functions. For each
stand age t, the optimal harvest boundary must be spec-
ified by a pair of functions

U∗ = gt(St) (14)

and
S∗ = ht(Ut) . (15)

If, at a given stand age t and timber price St, the price of
CO2, Ut, falls below the threshold price U∗, the stand is
harvested immediately. Similarly, the stand is harvested
immediately if, for a given stand age t and CO2 price Ut,
the price of timber St exceeds the threshold price S∗.

Assuming, as in the one-dimensional case, that ini-
tial prices of timber, S0, and carbon, U0, are the only
simulation inputs that vary from one rotation to the
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next, introducing carbon permits as a second source of
stochastic revenue turns the expected bare land value,
f1, into a function of two variables

f1(S0 , U0|C, r, bS, σS, . . .) ≈ π1(S0 , U0, C) . (16)

That is, f1(S0, U0|·) now defines a surface over the
S0, U0-plane for given values of the harvest cost C, dis-
count rate r, price trends bS , bU , volatilities σS , σU , and
other parameters.

The expected bare land value of Approximation 16
represents a two-dimensional analog of Approxima-
tion 11 and can be calculated with a procedure similar
to the one used in the univariate case. For a given num-
ber of rotations, N , the procedure starts with the N th

rotation and recursively calculates expected bare land
values and associated boundary functions until the first
rotation is reached. For each rotation i ∈ 1, . . . , N , an
estimate of the optimal harvest boundary at a given age
t, consisting of two sets of age-specific optimal harvest
curves of Equations 14 and 15, is calculated, together
with an estimate of the value function f i(S0, U0|·).

Given a rotation i, a boundary curve gt(St) specified
in Equation 14 can be calculated at each stand age t,
by holding the timber price fixed at a particular value,
S̄t ∈ S̄t, while searching for the root U∗ by varying the
value of Ut. The set S̄t consists of all points on the St

axis where the boundary is to be calculated for a given
stand age t. Thus, the boundary search in the carbon
direction consists of finding the root U∗ of equation

CF t
S + f i+1(S̄t, U

∗|·) = CF t
U+

E[dt+1
t {CF t+1

S + f i+1(St+1, Ut+1|·)}|S̄t, U
∗] ,

(17)

where the timber and carbon cashflows CF t
S and CF t

U

are specified by Equations 12 and 13, and the value
of f i+1(St, Ut|·) is known from previous calculations.
Equation 17 states that, for each point on the optimal
boundary, the sum of the harvest profit at time t, CF t

S,
and the expected discounted value of future rotations,
f i+1(·|·) must equal the value of carbon payment, CF t

U

and the expected discounted value of delayed harvest.
This root-finding procedure is performed for all values
of S̄t ∈ S̄t. The calculated values of U∗ can then be
interpolated to produce an approximation of gt(St), the
age-specific optimal harvest boundary in the carbon di-
rection of Equation 14.

Once the boundary curve in the carbon direction is
known, the roles of St and Ut are reversed. A boundary
curve ht(Ut) of Equation 15 is found by holding carbon
price fixed at a particular value Ūt ∈ Ūt and finding the
root S∗ of equation

CF t
S + f i+1(S∗, Ūt|·) = CF t

U+

E[dt+1
t {CF t+1

S + f i+1(St+1 , Ut+1|·)}|S∗, Ūt] ,
(18)

by varying the price of timber. This root-finding proce-
dure is also performed for all values Ūt ∈ Ūt, with Ūt

being the set of points on the Ut axis where the boundary
is to be calculated for a given stand age t. The resulting
values of S∗ can be interpolated to yield an estimate of
the age-specific boundary curve in the timber direction
of Equation 15.

An estimate of the expectation term on the right of
Equations 17 and 18 is calculated as

πi(St, Ut, C) ≈ 1
M

L∑

v=1

Tv +
1
M

K∑

r=1

Er (19)

which is a two-dimensional analog of Simulation 9 with
Tv =

∑τ∗−1
w=1 dw

t CF w
U,v + dτ∗

t {CF τ∗
S,v + f i+1(Sv

τ∗ , Uv
τ∗ |·)}

and Er =
∑T−1

z=1 dz
t CF z

U,r +dT
t {CF T

S,r +f i+1(Sr
T , U r

T |·)}.
In Simulation 19, M = K + L is the number of simu-
lated bivariate price paths. K stands for the number of
price paths that did not lead to early harvests at times
t ≤ τ∗ < T , while L represents the number of price
paths where such early harvests occurred. Each of the
terms

∑U−1
i=1 di

t CF i
U,j represents the discounted value of

all annual carbon cashflows of Equation 12 that were ac-
crued before a harvest took place for a given price path j
either because carbon price falls below the optimal har-
vest boundary, i.e. Uτ∗ ≤ U∗, or timber price exceeds
the optimal harvest boundary, i.e. Sτ∗ ≥ S∗. All other
terms are defined as above.

Once a pair of boundary curves is calculated for ev-
ery stand age t ∈ {0, . . . , T} for a given rotation i, the
boundary curves can be used to find the bare land value
πi(S0 , U0, C) with Simulation 16, which represents the
second part of the solution for rotation i. The procedure
of calculating the optimal harvest boundary and associ-
ated expected bare land value is repeated recursively for
all rotations i ∈ {1, . . . , N} starting at i = N and termi-
nating at i = 1. The expected bare land value of the first
rotation, π1(S0, U0, C), together with the associated set
of boundary curves represent the solution of the infinite
horizon optimal harvest problem with stochastic timber
and carbon prices.

5 Illustrative Example

In order to illustrate the application of the bivariate
algorithm presented above to a forest management prob-
lem, it was necessary to identify several key inputs. The
first of these concerned the site location and silviculture.

The forest stand used in this study was assumed to
be located on a high yield site in western Washington
State. A yield curve appropriate for such a location was
approximated by spline fitting from a dataset spanning
a 100 year period. The available yield data determined
the length of simulation horizon, T , which was set to 100
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Table 1: Silvicultural and other site specific information.
Silviculture

Property Value
Location Western Washington
Site Yield High
Composition 100% Douglas fir
Management Regime Clearcut

Table 2: Forest owner specific parameters.
Forest Owner Characteristics

Parameter Value
Replanting and Harvest Cost ($/MBF) 100
Annual Discount Rate (%/year) 5
Time Step Length (year) 1

years, with five years being the earliest possible harvest
age producing commercially valuable timber. The stand
was assumed to be 100% composed of Douglas fir, and
the management regime to consist of clearcut harvests
followed by immediate replanting. In all calculations,
there was assumed to be one harvest opportunity ev-
ery year between the stand ages of five and 100 years.
Table 1 provides a summary of site specific properties.

Other parameters whose values had to be specified
include the appropriate annual rate of discount and the
magnitude of the harvest and replanting cost per MBF.
Both of these parameters were assumed to vary across
forest owners. In particular, the rate of discount was
assumed to reflect the cost of capital to a given forest
land owner rather than the risk-free rate. The values
used in this article are given in Table 2.

In order to calculate the cashflows from Equations 12
and 13, it was necessary to specify the values of α and
γ. α represents the percentage of sequestered carbon re-
moved from the stand at harvest time, and its value was
set to 60% by assumption. γ is a factor for converting
atmospheric CO2 in metric tons to sequestered carbon
in MBF of Douglas fir. Its value was determined from
available data.

The prices of carbon and timber were modeled by
the logarithmic mean-reverting stochastic process. The
logarithmic mean-reverting process is conveniently de-
scribed by the stochastic differential equation

dSt = κ (μ − lnSt)St dt + σ St dWt , (20)

where St represents the price at time t, κ stands for the
rate of reversion to the long term trend μ, σ stands for
price volatility, and dWt is an increment of the Wiener
process.2

2From the perspective of microeconomic theory, the logarith-

Table 3: Forest-owner-specific parameters.
Carbon Parameters

Parameter Value
α (%) 60
γ (CO2 ton/MBF) 3.6

Using Ito’s lemma, Equation 20 can be solved analyt-
ically. The exact transitional density of lnSt is normal
and takes on the form

lnSt ∼ N(Θ; Σ) , (21)

where Θ = lnS0 + (1 − e−κt)(μ − σ2/2κ) and Σ =
σ
√

(1 − e−2κt)/2κ. Because the distribution defined in
Model 21 is the exact solution of Equation 20, it can be
used to simulate price paths of St with an arbitrary step
length, such as the one year length used in our simula-
tions.

Table 4 contains the price model parameter values
that were used during the simulations. These values
were estimated from stumpage price data by linear re-
gression. The only exception was ρ, which denotes the
strength of the correlation between the elements of the
bivariate Wiener process used in simulating the price
paths of timber and carbon. The value of ρ was set to
10% by assumption, because the available time series did
not overlap.

After the price model was chosen and calibrated, it
was used to determine S̄t and Ūt, the sets of points on
the St and Ut axis where the boundary curves of Equa-
tions 14 and 15 would have to be calculated. The sim-
plest way to determine S̄t and Ūt is to use Model 21 to
simulate a large number of price paths over the entire
length of the simulation horizon, in this case 100 years.
Figure 2 contains a plot of the terminal values of 10,000
price paths from a typical simulation performed with the
parameters set to values specified in Table 4.

The plot in Figure 2 shows that very few price paths
terminated outside the rectangle whose upper right cor-
ner was located at the $2000 dollar mark in the timber
direction and the $100 mark in the CO2 direction. These
values were used to establish empirical upper limits of
the domains of the optimal harvest boundaries of Equa-
tions 14 and 15. The set S̄t was then formed from 40
values of St evenly spaced in the interval St ∈ [0, 2000].
Similarly, the set Ūt was formed from 20 values of Ut

evenly spaced in the interval Ut ∈ [0, 100].
The product S̄t × Ūt defines a grid of points in the

St, Ut-plane where the estimates of the expected bare

mic mean-reverting process is an attractive choice for the price
of timber – a renewable resource. However, the model was cho-
sen for carbon prices only as a proxy, to be replaced by a more
appropriate process when more data becomes available.
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Table 4: Parameter values for stochastic differential
equations governing the behavior of timber and carbon
prices.

Price Model Parameters
Parameter Timber Carbon
S0 400 ($/MBF) 25 ($/CO2 ton)
μ 6.0 (ln $/MBF) 3.5 (ln $/CO2 ton)
κ (%/year) 0.35 4.0
σ (%/year) 0.4 0.5
ρ (%/year) 0.1

land value functions f i(S0, U0|·) would have to be cal-
culated in order to evaluate Simulation 19.3

6 Simulation Results

The mean reversion property of the price model spec-
ified by Equation 20, combined with the long time hori-
zons characteristic of the optimal timber harvest prob-
lem, suggests that current prices of timber and carbon
should have only a small impact on expected bare land
values, f i(S0, U0|·), for all but very low values of mean
reversion rate κ. Instead, the long term price level μ
should be the price model parameter most influential in
determining bare land values.

In order to test this intuition, the expected bare land
value of a single rotation (N = 1) was calculated for
different pairs of starting timber and carbon prices on
a 50×50 grid spanning the (0, 2000) × (0, 100) region
of the St, Ut-plane. Four such simulations, each with
re-initialized starting value of the random number gen-
erator, were performed in R ?. In each of the four sim-
ulations, a visual inspection of the results revealed no
pattern, and the differences in the values of f i(S0, U0|·)
surface appeared to be caused by the random variation
characteristic of Monte-Carlo results. A regression plane
was fitted to each of the four datasets. All four planes
were nearly flat over the region of interest, and there was
no discernible pattern in the direction of the normal vec-
tor: each of the planes was slightly tilted in a different
direction.

These results indicate that, for mean reverting pro-
cesses, the initial prices of timber and CO2 have only a
minimal impact on expected bare land values with the
simulation parameters as given above. This leaves the
constant long-term price trend μ, price volatility σ, rate
of discount, and site productivity as the factors that de-

3For price models such as in Equation 20 that permit an ana-
lytical solution, these ranges can be determined exactly from the
transitional density for a desired confidence level. However, this
empirical procedure works well for more complex price models
where the exact form of the transitional density is unavailable.
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Figure 2: Estimate of the region containing the majority
of end values of 50,000 timber and carbon price paths
simulated over a period of 100 years.

termine bare land values. Because the expected bare
land value surface is nearly flat over the relevant region
of the St, Ut-plane, its estimate f1(S0, U0|·) need not be
calculated in its entirety over a large grid of starting
timber and carbon prices. It is sufficient to calculate
f1(S0, U0|·) at a single point (S0, U0) located, for ex-
ample, near the center of the region of interest. This
approach greatly reduces the amount of calculations re-
quired to estimate f1(S0, U0|·) as well as the estimates
of future rotation values f i(S0, U0|·) for i ∈ 2, . . . , N .

Another potentially significant reduction of computa-
tional effort may be realized by judiciously choosing N ,
the number of rotations. Performing several simulations
for increasing values of N can help assess the rate of con-
vergence in the number of rotations. The results of these
simulations for parameter values of Tables 1 through 4
are illustrated in Figure 3.

Each of the box-plots in Figure 3 was constructed from
the results of nine sample runs. The first box-plot rep-
resents the value of a single rotation. The second box-
plot represents the combined value of two rotations, the
third box-plot represents the combined value of three
rotations, and so on. The figure reveals that for the pa-
rameter values specified above, convergence is achieved
by simulating four harvests, and tolerable accuracy is
achieved by simulating three harvests.
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Figure 3: Convergence is achieved after four rotations
(i.e. N = 4). Each of the six box-plots indicating the
combined value of future harvests was generated from
nine sample runs.

As discussed previously, the solution to the stochas-
tic optimal harvest problem consists not only of the ex-
pected bare land value but also of the optimal harvest
boundary, which serves as a decision-making rule for the
forest owner with regard to optimal harvest timing. The
shape of the optimal harvest boundary curves for the
stand used in this analysis is revealed by Figures 4 and 5.
The boundary curves in Figure 4, specified by Equa-
tion 14, were calculated for 40 evenly spaced values of
the timber price S̄t ∈ [0, 2000]. The boundary curves in
Figure 5, specified by Equation 15, were calculated for
20 evenly spaced values of the CO2 price Ūt ∈ [0, 100].
All intermediate values were approximated by linear in-
terpolation.

For a given stand age t, each of the optimal harvest
boundaries depicted in Figure 4 separates the St, Ut-
plane into harvest and delay regions. As described in
the previous section, a point on a boundary curve is cal-
culated by holding the selected timber price fixed at S̄t

while searching for the corresponding carbon price U∗

that equalizes value of harvesting today with the ex-
pected discounted value of harvesting harvesting later.
The region below a given curve is the harvest region,
because in this area timber prices are high relative to
carbon prices. In the region above the curve is the delay
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Figure 4: Each gt(St) curve initially runs along the hor-
izontal axis and then deviates upward. Note that the
size of the delay region decreases with increasing stand
age.

region, because the revenue from carbon sequestration
is relatively high there. Note that as the stand age in-
creases, the size of the harvest region increases at the
expense of the delay region, i.e. a mature stand is more
likely to get harvested.

The optimal harvest boundary curves depicted in Fig-
ure 5 are obtained, for a given stand age t, by fixing the
price of carbon at Ūt while searching for the price of
timber S∗ that equalizes the value of harvesting imme-
diately and the expected discounted value of harvest-
ing later. As in the previous case, each of the bound-
ary curves separates the price plane into harvest and
delay regions. However, in Figure 5, the harvest re-
gion is above each curve, because carbon prices are rel-
atively low there and do not justify further harvest de-
lay. Hence, the stand should be harvested immediately if
timber prices are above the boundary. The delay region
is located below the boundary curve where carbon prices
are relatively high and timber prices relatively low, thus
harvest should be delayed to maximize revenue from car-
bon payments. As before, the area of the harvest region
increases as the stand matures.

The last result presented in this section concerns the
distribution of optimal harvest ages. In the traditional
Faustmann framework, timber prices are known and
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Figure 5: Each ht(Ut) curve separates the price plane
into delay and harvest regions for a given age of the
stand t. Note the decrease in the size of the delay region
with increasing stand age.

constant and, hence, a fixed optimal rotation length can
be determined. Such a strong result cannot be obtained
when prices are stochastic. In order to maximize profit,
forest owners must adjust harvest timings in response to
price fluctuations. Figure 6 depicts the frequency distri-
bution of recorded harvest ages for a sample simulation
run and indicates that, given the above values of sim-
ulation parameters, the mode harvest age is about 40
years. In order to reveal the full shape of the harvest
time distribution, the minimal harvest age was set equal
to two years, even though the commercial value of the
stand at that age is minimal. The sudden increase in the
number of harvests at the end of the simulation horizon
is an artifice of the finite simulation horizon that would
not be observed in reality.

7 Summary

This article presented a Monte-Carlo-based methodol-
ogy for the solution of the multi-period optimal harvest
problem with stochastic prices of timber and CO2. The
solution algorithm extends the work of Ibáñez and Zap-
atero 2004 and provides a flexible alternative to the nu-
merical methods based on finite difference schemes that
have been previously employed in the literature.

For illustrative purposes, the methodology was em-
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Figure 6: Frequency distribution of harvest timings for
50,000 simulated price paths with corresponding 50,000
antithetic paths. The typical harvest age for the stand
used in the analysis is about 45 years.

ployed to calculate the expected bare land value for a
Douglas fir stand that was assumed to be located on a
high yield site in western Washington State. In addi-
tion to calculating expected bare land values, the opti-
mal harvest boundaries used for decision making with
regard to harvest timing were also calculated for each
age where harvesting the stand is possible. The results
of expected bare land value calculations and the optimal
harvest boundaries were then discussed. Additionally, a
frequency distribution of optimal harvest ages was pre-
sented and discussed.

In the analysis, the prices of timber and CO2 were
each assumed to follow a logarithmic mean-reverting
process. While the logarithmic mean-reverting process
is a realistic choice for the model of timber price behav-
ior, it was used only as a proxy in the case of carbon
prices. Further analysis is necessary in order to identify
a more appropriate model of carbon prices. At present
time, however, this task is made difficult by lack of req-
uisite data. When a new model of carbon prices has
been identified, it should be easily incorporated into the
described methodology to yield more accurate results.
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