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Abstract. SPATE-HPC is a single tree level forest dynamics simulator capable of simulating very large
forest areas. The size and shape of the simulation area as well as the number of trees are only restricted by
the amount of memory available and subareas can be used for a tighter specification of the simulation.

In this article we describe the parallelization of SPATE-HPC and its major computational challenges. We
describe the domain decomposition methods and the load balancing strategy we have used to ensure good
performance and scalability of huge simulations. We also describe how we have verified the correctness of
the parallel implementation. Additionally we present performance measurement results for the simulator
by running a fixed 32,300 ha simulation on 32-2,048 processors and a simulation with 1,000 ha/core on
32-2,048 cores. The results show that it is possible to simulate a forest area of more than 1,000,000 ha with
several billion trees.

Keywords: Forest dynamics simulation, individual tree, high-performance computing, parallel pro-
gramming

1 Introduction

The forest industry and individual forest owners are
very interested in creating well functioning and produc-
tive forests by using various silvicultural methods and
thinning practices. Experimental studies of these meth-
ods are tedious to perform, particularly due to the long
time perspective involved, and therefore forest dynamics
simulators have been developed. Forest dynamics simu-
lators can be classified based on the modelling unit used
(Porte and Bartelink 2002): whole stand and single tree.
Whole stand simulators are based on stand level mod-
els usually with no individual tree information. Single
tree simulators are based on a tree model and a list of
trees. A simulated tree can be a representation of one
or several real trees. Single tree level simulators can fur-
ther be classified into distance-dependent and distance-
independent based on if intertree distance information
is used in the simulation or not. Gap simulators, which
are a kind of single tree simulators but simulate only
small forest patches, are sometimes included as a sepa-
rate class.

Several implementations of the different simulator
types exist, all with their own capabilities and limi-
tations. Stand level simulators are typically compu-

tationally very efficient but produce coarser level out-
put, whereas single tree simulators, especially distance-
dependent, are computationally more heavy but can per-
form more fine-grained operations and produce more de-
tailed output. In many single tree level simulators (e.g.,
Harja and Vincent (2008), Pretzsch et al. (2002), Col-
igny et al. (2003)) the simulation area is limited in size,
to a few hectares, or in shape, to a rectangle or square.
There might also be a limitation regarding number of
trees.

SPATE-HPC is a distance-dependent single tree level
forest dynamics simulator which imposes very few re-
strictions on the simulation. The simulation area can be
of any size and shape which makes it possible to simulate
real forest areas in addition to hypothetical ones. The
simulation area can also be divided into sub-polygons to
take into account different conditions in different parts
of the forest. SPATE-HPC is designed to be able to sim-
ulate anything from small forest stands to huge forests
on a landscape scale. The number of trees is restricted
only by the amount of computer memory and each tree
in the simulation is directly mapped to a real tree so in-
dividual trees’ properties can be taken into account e.g.
when making thinning decisions.

In this article we describe the parallelization of
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Figure 1: Sample area of 35 hectares from a digital map
of Nurmes, Finland.

SPATE-HPC and the challenges encountered in making
the simulator able to efficiently simulate areas up to and
above 1,000,000 ha containing more than 1,000,000,000
trees. In section 2 we briefly present the simulator and
the models used in simulation. In section 3 we describe
the issue with locating tree competitors and how it has
been solved in the simulator. In section 4 we describe
how the simulator has been parallelized, the domain de-
composition method used and the communication be-
tween processes. Section 5 describes the load balancing
issues faced and how they have been solved, and in sec-
tion 6 we briefly describe what we have done to ensure
that the parallel version has been correctly implemented.
We conclude by providing scalability and performance
results of the simulator in section 7.

2 SPATE-HPC

SPATE-HPC is a single tree level, time step based
simulator which simulates tree growth, mortality, repro-
duction and forest management. The length of the time
step is user definable and typically chosen to be 1-10
years. The simulation area is unrestricted in size and
shape and can be divided into several compartments. A
compartment is a polygon-shaped area with global pa-
rameters for the area and for the trees inside it. An
example of a compartmentalized simulation area can be
seen in Figure 1.

The simulator uses a distance dependent competition
model where trees close to each other compete while
trees farther away than a certain distance, the compe-
tition distance, do not affect each other directly. The
competition area for a tree is defined as a circle with
the competition distance as radius, centered on the tree.
The competition is based on distance only and is not
restricted by compartment borders. A more complex
competition area than a circle, e.g. a polygon, could be

used as long as there is an efficient method to detect if
a point (another tree) is inside the competition area.

The model presently implemented in SPATE-HPC is
a linear stochastic simulation model (Lin 2003), which
has the form expressed by eq. 1, however the simulator
can be modified to use any model where interactions
between trees are local.

Y = xβ + ε (1)

This model is used to calculate a property Y (e.g. di-
mension or height) for a target tree. Both x and β are
vectors containing one or more elements. Each element
in x consists of a competition index for the tree or a
combination of competition indices for the tree. The
competition indices are dependent on the tree or its sur-
roundings (e.g. tree diameter, average distance or tree
density inside the competition area). The elements in β
are calculated using the linear model in eq. 2 to allow
each βi to depend on the target tree.

β = a∗
1β

∗
1 + a∗

2β
∗
2 + . . . (2)

In eq. 2 each a∗
i is a factor related to the current

tree. Possible values are for instance tree age, diameter
or a tree species coefficient. The β∗ values are parame-
ters specified by the user to weigh the a∗

i factors. The
variable ε in eq. 1 is a pure random component.

2.1 Simulation flow The program flow, as shown in
Figure 2, consists of initialization, simulation and statis-
tics output. First the simulator is initialized based on
given input parameters (simulation area, model parame-
ters etc). Then the actual simulation is performed, con-
sisting in turn of two main parts: initial forest genera-
tion and time steps. In the initial forest generation part
the starting point for the simulation is set up while the
actual simulation is done in the time steps. These are
described in more detail below. Finally statistics (age
structure, volume, removal, etc.) for each compartment
and time step in the simulation are summarized and out-
put.

For accurate statistical results it might be necessary
to use multiple replications, i.e. run the simulation mul-
tiple times using different random numbers. For each
replication the initial forest generation and all time steps
are simulated and aggregated data such as basal areas
and volumes are stored. At the end of the replications
average values for all the aggregated data are calculated.

2.1.1 Initial forest generation The starting point
for the simulation is defined in the initial forest gen-
eration part by setting up the simulation area, its com-
partments, and populating the compartments with trees.
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Figure 2: Program flow

The user can provide input data on different levels rang-
ing from only the number of trees within a compart-
ment to the exact locations and properties of all trees in
a compartment. If locations and/or properties are not
provided by the user they are generated by the simula-
tor. Tree locations are generated using a homogeneous
Poisson process. When all trees have been placed the
tree properties are calculated using the linear formula in
eq. 1 using user defined parameters. Distributions for
one or more properties can additionally be specified and
these will be used to transform the generated properties
to the given distributions.

2.1.2 Time steps In the time steps part the actual
tree time evolution simulation is performed. Starting
from the initial forest we simulate one time step at a time
until the requested number of years has been simulated.
Each time step is divided into 4 phases, executed in this
particular order: growth, mortality, management and
reproduction. All calculations in a time step are based
on the state of the forest at the beginning of the time
step, i.e. changes are not applied until at the end of the
time step.

In the growth phase the growth for each tree is calcu-
lated using eq. 1 by taking the individual tree’s competi-
tion into account. The mortality phase determines which
trees will survive the time step using regular (growth
less than a given threshold) and irregular (using a lo-
gistic model) mortality. Management is the only part
of the program where external interaction with the for-
est is simulated. The methods used for management are
based on single tree properties which enables the usage
of detailed management methods. In the reproduction
phase the number of new seedlings to be generated is
determined based on input parameters and the current
compartment state. The new seedlings are placed into
the compartments using a homogeneous Poisson process
and their properties are calculated using eq. 1 and given
parameters. For reproduction it is also possible to spec-
ify a transformation of the properties like for the initial

forest.

3 Finding neighboring trees

There are two main types of operations in the simu-
lator: those that operate on a compartment at a time
(management, reproduction) and those that operate on
all trees in the simulation (growth, mortality). For com-
partment level operations it is essential that each tree is
assigned to only one compartment so no compartment
overlaps another compartment. Both types of operations
operate on one tree at a time and take trees inside the
tree’s competition area into account. For the operations
to be efficient it is important to be able to quickly locate
all trees inside a tree’s competition area.

The competition for a tree, consisting of the trees in-
side the tree’s competition area, is not restricted by com-
partment boundaries; all trees inside the competition
area are included regardless of which compartment they
belong to. To be able to locate competitors efficiently
we utilize the cell-space partitioning technique (Buck-
land 2004), which is a simple spatial indexing method
based on a regular tessellation of the simulation area.

We set up the spatial index by overlaying the simula-
tion area by a regular grid of cells, unrelated to compart-
ment borders, as shown in Figure 3. Two mappings are
set up for the cells. The first one links each tree to the
cell it is located in. The second one is a list created for
each cell containing all trees inside the cell and addition-
ally all trees outside the cell but within the competition
distance from the cell border. Figure 3 also illustrates
a part of the grid, where the dashed square shows the
area from which trees are included in the cell’s tree list.
All the trees in the figure are thus added to the list for
the center cell.

Using the grid we can quickly locate all neighbors of
a tree. The cell for a tree can be retrieved directly using
the tree to cell mapping. The cell to trees mapping then
gives the tree list containing all trees within or close to
the cell. Some superfluous trees will be included in this
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Figure 3: The sample area overlaid with squares. A tree
is assigned to the cell it resides within and linked to all
cells its competition area overlaps.

list and the actual neighbors, which are closer than the
competition distance to the target tree, must be located
by looping through the list and checking the distance to
the target tree.

The size of the grid cell (A in Figure 3) determines
how many trees will be included in the cell’s tree list.
A small cell size produces more cells and speeds up the
lookups as the tree lists will be shorter. A large cell size
produces fewer cells and slows down the lookups as the
tree lists grow longer. We have chosen A to be twice the
competition distance C, which ensures that each tree is
added to at most four tree lists. The maximum memory
required for the grid with N trees is thus 4N tree list
pointers and N tree to cell pointers, i.e. 5N pointers.
The memory usage of the cells is small compared to this
and can be disregarded. A simulation area of 1,000 ha
(3.16 km*3.16 km) is divided into 80*80 cells when using
a competition distance of 20 m. These 6,400 cells require
only 50 kB of memory.

The algorithm makes the location of tree neighbors a
local problem, unaffected by the total size of the sim-
ulation area. The overhead in each lookup is related
to the size of the grid cell (G = (A + 2C)2 = 16C2)
and the density of the forest. Provided that the tree
density D is roughly constant in the simulation area,
the number of trees NT returned from a lookup will be
NT = D · 16C2. The average number of actual competi-
tors is NC = πC2D and thus the number of superfluous
trees returned by each lookup is

NT − NC = (16 − π)C2D (3)

or related to the actual number of neighbors

NT − NC

NC
=

16
π

− 1 ≈ 4 (4)

We will thus receive 3NC extra trees from each lookup
and discard these later based on the distance. When the

number of actual competitors is small 3NC will also be
small. For a larger number of competitors (denser forest)
the overhead will be larger.

The performance of the algorithm to locate neighbor-
ing trees is crucial to the simulator. The trivial solution
with one large list containing all N trees is not feasible
for larger simulations as the run time will be completely
dominated by the time it takes to find neighbors (the
run time is O(N2)). As an example, a single time step
in a simulation with only 25,000 trees (25 ha) takes 0.6s
when using the cell-spacing algorithm and 49s when it-
erating the full tree list.

The optimal value of A for the cell spacing algorithm
is a tradeoff between memory usage and performance. A
smaller value of A produces more lists, potentially adds
trees to more than four lists but improves lookup times.
A more complex data structure like quadtrees (Finkel
and Bentley 1974) could also be used to enable mak-
ing coarser and finer divisions of different parts of the
simulation area. As the quadtree algorithm is recursive
and first makes a very coarse division followed by recur-
sive divisions when needed it would save some memory
at the outer parts of the bounding box of the simula-
tion area (where there are no trees) and could produce
shorter lists for really dense parts of the area by using
a finer division. The shorter lists would improve perfor-
mance for finding tree neighbors in the denser parts but
the recursiveness of the quadtree algorithm also has a
negative impact on the performance as locating a tree
list requires more than one lookup. It is thus not clear
that using a quadtree would increase the performance.
Additionally the time used by the cell-spacing algorithm
is less than 0.5% of the total simulation run time (on a
1,000 ha area, 1,000 trees/ha) so this is not a bottleneck
in the present simulator.

4 Parallelization

The sequential version of the program is mainly lim-
ited by the amount of memory available. Using 1 GB of
memory approximately 4 million trees can be simulated.
Assuming a sequential program requires TS seconds for
a simulation a parallel version using P processes should
ideally be capable of performing the same simulation in
TS

P
seconds, and also be able to do larger simulations,

ideally with 4P million trees in time TS .
A parallelization based on replications is trivial as all

replications are independent of each other. For multi-
replication simulations this fulfils the goal of improving
simulation time but does not enable simulation of larger
areas. We will thus not consider this particular paral-
lelization problem further in this article but focus on
a parallelization based on domain decomposition using
MPI (Gropp et al. 1999), i.e. using message passing be-
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tween the processes.

4.1 Parallelization requirements To be able to
simulate larger areas we consider a decomposition of the
total domain into P subdomains. Each of the P sub-
domains should be handled simultaneously by different
processes. The total workload W of a time step in the
simulation should be divided among the subdomains in
such a way that the workload Wi of each subdomain i
is the same. This is the fundamental idea of load bal-
ancing (Cybenko 1989). Ideally the individual workload
is also the total workload shared among the processes:
Wi = W

P . Additionally, we do not want the decompo-
sition to be limited to P = 2N processes but we would
like to support any number P .

We also need to take the communication between pro-
cesses into account. Trees compete with other trees
within the competition distance C, hence each process
must be aware of all trees within distance C from its
borders. If the competition distance is individually cal-
culated for each tree we need to keep track of the largest
competition distance and use it as C in the paralleliza-
tion. This ensures that all needed competitors are avail-
able in the processes. To ensure that communication
is only needed between neighbor processes we restrict
the size of the subdomains to be at least C high and
wide. As C is typically much smaller than the size of
the simulation area this is not a limiting restriction in
most cases.

The total workload of the simulation is proportional
to the number of trees N and the density of the forest
D. The time T it takes to calculate the properties for a
tree in one time step is dependent on the number of trees
within its competition area, which in turn depends on
the tree density and the competition distance, and thus
T = D

π·C2 . The total time needed for the calculations in a
time step is NT . Additionally, there is a communication
overhead O in each time step. The total workload of a
time step in the simulation is thus specified by

W =
N ·D
π · C2

+ O (5)

4.1.1 Decomposition methods At the beginning of
the simulation we do not have knowledge of the number
of trees that will reside in each compartment. Thus we
cannot use the tree density to determine the workload
for each process, but have to assume equidensity in the
whole simulation area. Additionally, the communication
overhead is very small compared to the time required
to calculate tree properties, and therefore we simplify
eq. 5 for the workload in the initial decomposition to
W∝N ·a·D∝N . The workload is thus proportional to
the number of trees N and, with equal density, propor-

tional to the size of the sub domain.
A trivial decomposition method is to use the compart-

ments as the base for the decomposition and, without
splitting compartments, assign each compartment to a
process as in Figure 4. This approach has severe draw-
backs: we couple the number of processes to the number
of compartments, single compartment simulations are
not parallelized, the workload is not evenly distributed
but depends on the size of the compartment and it is
hard to determine which processes need knowledge of a
given tree.

Another well known method is to construct the bound-
ing box of the simulation area and divide it into a grid
with M ·N cells, as shown in Figure 5 (M = N = 3).
The drawback which makes this approach inadequate is
that the sizes of the subdomains vary (between 8,900 m2

and 68,800 m2 in our example) and thus the workload
is unevenly distributed. We are also limited to M ·N
processes.

The orthogonal recursive bisection(ORB) algorithm
(Warren and Salmon 1993) decomposes the area by re-
cursively splitting the area into two parts in the x and y
direction, both with equal workload. Using this method
we acquire an equal workload in all subdomains, visu-
alized in Figure 6 for P = 8. The downside with this
approach is that P must be a power of two, 2N .

The decomposition method used in SPATE-HPC is
a modification of the ORB method. We determine a
process grid size X·Y to use, like in the bounding box
case, and use that to divide the area into X sections
in the x-direction. We then recurse for each x-section
and divide it into Yi orthogonal sections. The result, as
shown in Figure 7 (X = Yi = 3), consists of subdomains
with equal workload. By allowing the number of sub
sections within the x-sections to vary we can actually
use any number of processes with this method.

4.2 Determining the grid size The challenge in our
modified decomposition algorithm is to determine X
and Yi. Given X and Yi the algorithm is determinis-
tic and will create a decomposition with equal workload
for each subdomain. The problem of determining X and
Yi resembles the constrained matrix-matrix multiplica-
tion (MMM) problem (Beaumont et al. 2000) where a
unit square is divided into P non-overlapping rectangles
according to an area criteria si for each P such as to
minimize the sum of the perimeters. With the addi-
tional constraint that the tiling is made up of columns,
exactly like in our method, the optimal solution can be
calculated. We cannot directly take advantage of that
method as the simulation area is not a rectangle and
thus does not completely cover the bounding box.

We calculate X (columns) and Y (rows) from P with
the same goal as the MMM solution, that is to minimize
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Figure 4: The sample
area decomposed using
the compartments (P =
11). The optimal area for
each subdomain is 31,970
m2 while the actual sizes
vary between 12,340 m2

and 64,000 m2.

Figure 5: The sample
area decomposed using
the bounding box, P =
9. The optimal area for
each subdomain is 39,075
m2 while the actual sizes
vary between 8,900 m2

and 68,800 m2.

Figure 6: The sample
area decomposed using
the orthogonal recursive
bisection method, P = 8.
All subdomains have the
optimal area 43,960 m2.

Figure 7: The sam-
ple area decomposed us-
ing the modified orthog-
onal recursive bisection
method, P = 9. All sub-
domains have the optimal
area 39,075 m2.

the sum of the perimeters and thus also the communi-
cation overhead as the data that needs to be commu-
nicated is proportional to the number of trees close to
the border, which again is proportional to the length of
the borders of the rectangle (l1 ,l2). The overhead for a
subdomain is thus O = 2·l1 + 2·l2. The individual sub-
domain has the shortest perimeter when it is a square
and the minimum value for the sum of the perimeters is
thus reached when all subdomains are square shaped.

To make the individual cells as close to squares as
possible we use the aspect ratio (x/y) of the simulation
area’s bounding box and the number of processes (P ) to
determine X and Y . Denoting by �Z� the largest integer
smaller than or equal to Z, we have

X = �
√

P ·
√

x/y� (6)

Y = �
√

P · 1.0
√

x/y
� (7)

The X and Y we calculate using eqs. 6 and 7 will not
always utilize all P processes, i.e. X ·Y �= P . Taking into
account that the communication time in one time step is
generally much smaller than the time needed to perform
the calculations within a subdomain we obviously want
to utilize all available processes. To be able to do this
we disregard the communication overhead and trim the
larger of X and Y up until we reach X and Y values
such that X·Y ≤P , (X + 1)·Y > P and X·(Y + 1) > P .

If we still have X·Y < P we have L = P−XY leftover
processes with no place in the grid. We add these left-
over processes to the x-sections, at most one in each sec-
tion, and introduce an additional communication over-
head proportional to the width of the affected sections.

Figure 8: The sample area decomposed for 11 processes.
The size of each subdomain is equal even though the
first two x-sections contain an additional process, that
is, four processes instead of three.

The Yi value for the first L x-sections will then be one
larger than the other Yi values. A decomposition of the
sample area (Figure 1) with 11 processes thus produces
the configuration in Figure 8.

4.3 Implementing the process decomposition
grid Each process can, provided with basic information
on the system (number of processes, own id, simulation
area), calculate its position in the decomposition grid
independently of the other processes. The first step is
to determine the number of rows and columns in the de-
composition (X and Y ) using eq. 6 and eq. 7. Based on
this, the process can calculate its position (x, y) in the
process grid using x = PID

Y , y = PID mod Y , where
PID is the process id. If x ≥ X the process is a left-
over process and its position is x = P − XY, y = Y + 1.
Knowing its position the process can calculate its bound-
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aries using the modified recursive algorithm. As the re-
cursion is limited to two levels the calculation time is
independent of the number of processes in the system.
Taking into account the possibility of leftover processes
in the first L x-sections the fraction of the workload that
should be on the left side of both boundary locations re-
spectively can be calculated. Using a binary search and
the calculated fractions the process finds the start and
the end of the x-section which it is part of.

Once the x-boundaries are known the y-boundaries
can be calculated in a similar manner by dividing the x-
section into as many parts as there are processes in the
section (Yi) and use another binary search to locate the
boundaries where the workload above and below corre-
spond to the number of processes above and below.

4.4 Neighbors and communication To be able to
communicate with other processes, each process must
be aware of which processes are its neighbors and which
borders they have in common. As the grid is not regu-
lar, a process cannot without calculating all processes’
boundaries by itself determine which processes are its
neighbors, or even how many neighbors it has. Typically
a process in a large grid has 8 neighbors (the surround-
ing cells). In SPATE-HPC the processes broadcast their
coordinates once they have been calculated. The other
processes pick up the information and determine which
border (if any) is common to both. Two processes are
neighbors even if they are not physically connected to
each other but the distance between two points in each
of the areas is less than the competition distance.

As all calculations during one simulation time step
are based on the state at the beginning of the time step,
we only need to communicate tree information once per
time step. At the beginning of each time step we send
information about all trees which are less than the com-
petition distance C away from a cell border. If the com-
petition distance is tree dependent we can use the largest
competition distance as C. Information about different
trees needs to be sent to different cell neighbors, depend-
ing on which borders the processes share. For a neighbor
to the right we consider the trees along the right border,
for a neighbor below the bottom border, etc. The total
number of trees for which data must be sent is usually
very small compared to the total number of trees in each
process.

5 Load balancing

The initial domain decomposition is well balanced pro-
vided that the forest is and stays equidense. This is a
good approximation for a small forest area where no
management is performed. In a larger simulation area
there will inevitably be denser and sparser compart-

Figure 9: The sample area covered with roughly 50%
dense (darker) forest and 50% sparse (lighter) forest.

ments. Harvesting a large part of the forest in one time
step will also alter the density and lessen the workload
for some processes until new seedlings have grown. We
deal with these load balancing problems by rebalancing
the system as needed.

We rebalance the system by performing a new domain
decomposition, identical to the one performed at the ini-
tial stage of the simulation but using a more complete
workload formula. At this point we have tree informa-
tion and can thus include density in the workload calcu-
lations. The time needed to simulate one time step for
one part of the forest with N trees and D trees/m2 is
given in eq. 5. Disregarding the communication time O
we see that the workload is proportional to N ·D.

Using N ·D as weight we perform the decomposition
and take trees and density into account to achieve a
better balance. We still assume equal density within the
compartments and calculate N and D per compartment.
For a partial compartment we calculate the fraction of
the area which is inside the subdomain and use that to
calculate N and D.

The sample area from Figure 1 with roughly 50%
of the compartments covered with sparse forest (1,100
trees/ha) and roughly 50% covered with dense forest
(2,100 trees/ha), as illustrated in Figure 9, demonstrates
a case where the initial load balance is skewed. Figure 10
shows the execution time for the individual processes per
time step when using 8 processes. The processes with
the most work are doing three times as much work as
the processes with the least work. By rebalancing the
simulation after the first time step (in which trees are
generated), we acquire a much better balance. This is
shown in Figure 11. Figure 12 shows how the process
borders move in the rebalancing operation.

The system is not absolutely perfectly balanced (less
than 1% difference between processes) although an equal
number of operations is performed by each process. The
behavior can at least partly be explained by varying
cache utilization depending on how the tree objects are
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Figure 10: Process load balance for the area in Figure 9
when rebalancing is not used.

Figure 11: Process load balance for the area in Figure 9
when rebalancing is used. Rebalance overhead is shown
as a darker area.

placed in memory in each process.
The time needed for time step 2 includes an rebalanc-

ing overhead of two seconds, but still the execution time
for the time step is more than 5 seconds less compared
to the case where no balancing is done. In time step
3 and subsequent time steps the rebalance overhead is
much smaller and thus the gain is even greater.

We check for load balancing problems at the begin-
ning of every time step. We calculate the current weight
(N ·D) for each process and then the difference between
the maximum and minimum weight in the system. If
the difference is larger than a user given percentage, we
perform a rebalancing operation. The weight calculation
operation introduces a small overhead in each time step,
seen for time step 3 in Figure 11. This overhead is several
times smaller than the overhead for the actual rebalanc-
ing operation but in naturally balanced cases it pays off
to disable the rebalancing operations completely.

6 Validation of the parallel version

We have compared the results of the parallel version of
SPATE-HPC to a sequential version in order to ensure

Figure 12: Rebalancing the area moves process borders
towards the denser parts.

that the parallel version takes all boundary cases into
account and otherwise also behaves as expected. The
random numbers used in the simulation make it impos-
sible to directly compare the raw tree data output (loca-
tions and properties) between the versions. In a parallel
simulation, the random numbers are generated individ-
ually in each process using the parallel random number
generator (Mascagni and Srinivasan 2000) to ensure in-
dependent random numbers in each process. Because
of this, the random tree locations will differ between
a sequential and a parallel run, and also between two
parallel runs with a different number of processes. The
statistical output summary can be compared by hand in
all cases but only to the extent that it is similar, not ex-
actly the same. To verify the correctness of the parallel
implementation we have included a special mode in the
program that ensures that the random numbers are the
same for each individual tree independent of how many
processes are used in the simulation.

The special mode introduces a deterministic seeding
of the random number generator where the generator is
continuously seeded using a seed that is derived from the
current state of the simulation. The seed will therefore
be identical in both the sequential version and the paral-
lel version and independent of the number of processes
used. For tree based operations the seed is based on
the tree’s position and attributes. For reproduction and
other compartment based operations the process doing
the calculations performs them like it owned the whole
compartment. For this the process must be aware of all
trees close to the compartment, which means a lot of
extra information must be sent for the special mode to
work. The performance of the simulation is thus much
worse when using the special mode. The special seeding
mode should in any case not be used when performing
real simulations, as the seeding is based on the simula-
tion state and the results will be predictable and con-
tain patterns. Even though seeding is based on the state
of the simulation it is possible to vary the outcome by
changing the seeds by e.g. a factor. This corresponds
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to changing the seed in a normal simulation so we are
not limited to validating a single test case. We have
used this method to validate that the parallel version of
SPATE-HPC produces exactly the same results as the
sequential version.

7 Performance

We have used a simulation area of 32,300 hectares
containing 253 compartments in order to measure the
scalability of SPATE-HPC. The size of the area was cho-
sen in such a way that the same tests could be run on
32 and 2,048 cores using no more than 1GB of memory
per core. The test case has been executed on a Cray
XT4/XT5 hybrid machine with 2.3GHz quad-core pro-
cessors and on an AMD cluster with 2.6GHz dual-core
processors. Up to 2,048 cores were used on the Cray and
up to 256 cores on the cluster.

The performance of SPATE-HPC was measured by
timing the execution of the full program (wall clock
time) including all input and output phases. A break-
down of the run time for a 110 time step simulation
performing growth, mortality, reproduction and selec-
tive thinning (every 15 time steps) on a 59 ha area using
a single processor can be seen in Figure 13. The major-
ity of the run time (53%) is spent in the time steps, in
this case mostly in the growth part. A large part of the
time (41%) is also spent on gathering statistics during
the time steps and summarizing them at the end of the
simulation.

Figure 13: Run time breakdown for a 59 ha case on one
processor.

The parallel version of the program scales superlin-
early with a speedup factor of 10.4 between 32 and 256
cores (linear=8) and 88.6 between 32 and 2,048 cores

(linear=64) as shown in Figure 14. The AMD cluster
performs slightly worse but still exhibits almost linear
scaling with a factor of 7.6 between 32 and 256 cores
(expected=8). The superlinearity on the Cray is possi-
ble due to better cache usage when the amount of data
stored in each core decreases. A smaller simulation area
in each core also implies that the cache is more efficiently
used when locating neighboring trees due to data local-
ity.

Figure 14: Scalability test on 32-2,048 cores for a fixed
simulation area. Y-axis show the speedup (wall clock
time) compared to 32 cores.

To verify that the program can simulate very large
areas we have also investigated the scalability when the
simulation area per core is kept constant, i.e. increas-
ing the size of the total simulation area when increasing
number of cores. In the ideal case we would be able to
double the simulation area, double the number of cores
and complete the simulation in the same wall clock time
as before. SPATE-HPC does not in this sense scale per-
fectly but as Figure 15 shows, the required time for the
simulation does not increase more than 30% on the Cray
even when making the simulation area 64 times larger
(32 cores vs. 2,048 cores).

To be able to simulate very large areas it is not suf-
ficient that the program scales performance-wise very
well, but it must also be able to efficiently utilize the
memory available in each process. We have measured
the memory usage for the scalability test case in Fig-
ure 14. Memory usage has been measured by sampling
in all cores throughout the simulation. The value that
represents the memory usage is the maximum amount
used in any core at any point in time. The results of the
measurements can be seen in Figure 16.

Part of the memory in SPATE-HPC is consumed by
data structures used for storing information about pa-
rameters, compartments and other data which will not
change when increasing the simulation area. For the
test case, the memory used by these structures has been
measured to be approximately 5 MB. The Cray system
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Figure 15: A simulation on 32-2,048 cores with fixed
tree density and an increasing simulation area of
1,000ha/core.

Figure 16: Maximum memory usage per core for a fixed
case using different number of cores. MPI overhead and
static memory usage in SPATE-HPC have been excluded
from this figure.

introduces an additional MPI overhead of 75MB in each
core independent of the number of cores used, while the
AMD cluster introduces an overhead which is dependent
of the number of cores C (roughly 0.5·CMB in each pro-
cess). We have excluded both the MPI overhead and the
static overhead from Figure 16, which shows the mem-
ory scalability of the program. As can be seen from the
figure the memory usage on both machines scales almost
linearly with the number of cores.

8 Conclusions

We have described the parallelization of SPATE-HPC,
a single tree level forest dynamics simulator capable of
simulating trees in polygonal forest areas. We have also
described the computational challenges in the program
and shown how they have been efficiently solved both
regarding to CPU and memory usage.

SPATE-HPC has been parallelized in such a way that
single tree level simulations on a very large scale can be

performed. The same simulator and the same simula-
tion models can also be used for small forest areas. We
can scale up to a landscape scale and simulate forests
of several million hectares or we can just as accurately
simulate small forests of a few hectares.

The strength of SPATE-HPC lies in being able to use a
large amount of individual tree data from forest invento-
ries. Laser scanning and other remote sensing methods
have potential to become more common and more accu-
rate in the future. These methods could provide coarser
tree aggregation type data which after refinement to sin-
gle tree level data is usable as input for the simulator.
The simulator output would then be directly mappable
to the original forest area and could be used to make
predictions about the future yield of the forest. Alter-
natively, SPATE-HPC could be used as a management
tool to estimate which trees to harvest in the current
situation.

SPATE-HPC is available as open source
from the research project web page at
http://www.it.abo.fi/suswood.
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