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“NEAREST-TREE” ESTIMATIONS

A discussion of their geometry
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Abstract. The use of “nearest-neighbor” sampling has a long history. It involves measuring the distance
from a random point in an area to the nearest object. That history involves never quite solving the problem,
many examinations of special cases that never occur, adjustments that were ad-hoc, and a great deal of
uninformative algebra. In forestry we have attempted to use the “nearest-tree” method for estimating
numbers of trees on a landscape but the method is general, and can be used for any objects being sampled.

I believe that the literature has never shown the logic and geometry in a form that is useful to both under-
stand and solve the problem. This paper discusses the method from the geometric point of view, making no
assumptions about tree distribution, and shows why extending the processes to the “nth closest tree” much
reduces the bias and variability, as well as specifying what is needed to solve the problem in an unbiased way.
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1 Background

For more than half a century, the idea of measuring
distance from a random point to the nearest object has
been developed. It has often been reviewed in the sam-
pling literature, for instance in books by Pielou (1977),
and Bonham (1989). Most of the history of the sub-
ject seems to have been developed by ecologists or the
mathematicians to whom they brought the problem.

My own interpretation of the method is that it devel-
oped roughly as follows:

1) We can see that the average distance to objects,
trees for instance, clearly decreases when more objects
are added to a fixed tract area – especially if the trees are
not extremely clustered. Therefore, distances between
random points and objects could be used to estimate
the density (meaning objects per unit of land area –
tree stems in this case).

2) As with many sampling systems, they looked at
estimators based on a random distribution, even though
this was clearly wrong. Generally, the area around each
tree was computed using the distance to the nearest tree
(ri) by an equation known to be unbiased with a random
distribution, then averaged to give area At. This area
around the tree was then used to compute the number
of trees in an area as follows:

N =
(

Tract area
At

)

This was highly satisfying for random distributions,
although the mathematical proof of such a thing was
not easy to follow or explain. Having the equation was
enough.

3) A feeling of guilt developed in the ecological circles,
since everyone knew that trees and other objects were
not randomly distributed. No theoretical approach sug-
gested itself, so a period of simulation followed and ex-
amined quite a variety of estimations using the distance
(ri), such as detailed in Engeman (1994). As in all simu-
lations, it was never “done in our own backyard” so any
correction constants could not be trusted - no matter
how interesting they might be.

Even with no bias, the method will typically give an
answer that is too low. This is because of a high variabil-
ity when some distances to the tree are very short and
therefore give very large individual estimates of N. Al-
though these few very large estimates make the system
unbiased, they happen rarely enough that the median
answer is typically too low. In this case it is arguably
wise to use a biased estimate, which gives a smaller ac-
tual error in most cases, and just live with the bias.

4) The problem was extended, in hopes that the vari-
ability and any perceived bias would go away. Samplers
looked at the 2nd-closest tree, the 3rd, and generally the
“nthclosest tree” hoping that the bias would asymptoti-
cally go away, and indeed that seemed to be the case.

5) At several times people realized that this was really
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a problem of deducing the area of the average Voronoi
polygon around individual trees. Once you had that
area, of course, that puts you into the well known realm
of Horvitz-Thompson estimators and simplifies every-
thing. A Voronoi polygon is the area around a tree where
it is the “closest” tree to any point in the polygon. In
fact, the situation could be examined with any shape of
polygon around trees, provided that the polygons tessel-
lated the area and you could tell which polygon you fell
into with a sample point. Voronoi polygons are simply
a very convenient situation to consider.

I have never been able to find a simple procedure for
calculating the Voronoi polygon area around a single tree
while in the field. Solving the problem for thousands
of trees with XY coordinates is easily done and quite
efficient by computer algorithms, and you would think
that perhaps a simple Excel program must be available
to do this in the field using angles and distances to trees.
I have not been able to find such a program.

I would suggest that perhaps this is one of those times
when we could look at the geometry of the situation
and perhaps gain some insight. Before samplers found
out that calculus was so impressive to journal editors,
they would reason out the geometry of various situa-
tions and sometimes came up with some inspired results.
Consider Walter Bitterlich’s development in the 1940’s
of Angle-Count Sampling (typically called Variable Plot
Sampling) as one example (Bitterlich, 1984). He devel-
oped this as a geometry exercise, and it changed forest
sampling worldwide. Perhaps this is another example
that might benefit from such an approach. Geometric
proofs are, after all, a valid type of proof. They are
every bit as mathematical as an algebraic or calculus
approach, and can be much more illuminating.

2 The Geometry

Consider, first, the geometry of selecting a tree lin-
early “closest” to a random point. Clearly this is a
question of falling within a Voronoi polygon in which
that tree is “nearest”. Where other definitions of “clos-
est” are considered, the geometry remains very similar
and the solutions here are basically unchanged.

The average area of such polygons provides the key
to estimating the number of trees per hectare. A ran-
dom point in the area is always located in one and only
one of these polygons, and falls within those polygons
with probability proportional to their area. Figure 1
illustrates this situation.

3 The Problem

The question is: how can we estimate the polygon
area by only using a linear distance? If we could detect
the distance from the tree to the edge of this polygon,

Tree i

Ri

Figure 1: The “nearest-tree” Voronoi polygon, which is
sampled, proportional to its size, by a random point.

a solution becomes fairly simple, and the variability of
the estimator is much reduced. Consider the distance
Ri, which is from the tree to the edge of the polygon.
The edge is recognized because it is the point where one
or more other trees are the same distance from tree i.
A shorter distance ri has traditionally been used as the
distance from a random point to the tree. The larger
distance Ri is the distance from a tree (or more gener-
ally any fixed point) to the edge of the polygon. This
distance has some very fortunate characteristics.

One of the examples in some calculus courses is to es-
tablish that the quadratic average (Ra) of the distances
Ri chosen with equal probability from any fixed point
(for instance the tree in the polygon) is equal to a circle
having radius Ra with exactly the same area as that ir-
regular polygon. This was discussed by Matern (1956),
and more recently by Gregoire and Valentine (1995).
The polygon does not need to have straight edges for
this; but it does in our case, because the edges are formed
from bisectors of adjacent trees. For nearest-tree situa-
tions it is a very simple polygon with a reference point
(the tree) which is easy to identify.

This also leads to the estimate:
(
R2

a × π
)

= polygon area

.
If we simply use

(
R2

i × π
)

in each case, and then av-
erage the areas of these circles, we get an unbiased esti-
mate of

(
R2

a × π
)

for polygon area. In other words, we
simply treat the distances (Ri) as circle radii, and aver-
age those circle areas. We can use this simple arithmetic
average because the angular direction from the tree to
the polygon edge was randomly chosen with equal prob-
ability.
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Polygon {average Ri
2}π

equals polygon area.

Ra is quadratic average of polygon Ri

Figure 2: A circle having a radius (Ra) equivalent to the

quadratic average of all possible distances
√∑

R2
i

n , has
an area equal to the area of that irregular polygon.

If the ray outward from the tree was not randomly
chosen (such as when it was chosen by going through
a random point) we would have to weight the individ-
ual distances to compute the same expected value. Here
again, we have only to refer to previous work. Walter
Bitterlich taught foresters how to select circles propor-
tional to their area and how to use the results. This
simple geometry problem was solved by using an angle
gauge to choose trees at a random point. A random
point chooses the larger circles (radii) by the square of
the radius involved.

If we wanted to have the arithmetic average of the
radii as if the radii were chosen equally, the first sug-
gestion for this seems to have come from Hirata (1956).
We simply take the harmonic mean of the squared radii,
because the weighting of their selection was made with
probability proportional to the squared distance. It is
easy to imagine the weight being proportional to a small
wedge extending from the tree outwards, so the proba-
bility of a point falling into this area is proportional to
the square of the distance:

Ra =

√√√√√√√
1⎛

⎝
∑ [

1
R2

i

]

n

⎞
⎠

.
This is the unbiased estimate of the arithmetic mean

of equally chosen radii, even though the radii used in this
computation were chosen proportional to their squared
length by going from the tree through a randomly chosen

point in the polygon.
How could we do this in the field? Our problem is

simply to sample for the average circle area (R2
a × π)

using distances from the tree to the polygon edge. One
way to do this is:

1) Select a random point and go to the nearest tree.

2) From the tree, select a random angle, and go in
that direction until the edge of the polygon is en-
countered. This is the first point where another tree
would be equally far away (Ri).

This “random direction” step can be skipped if you
use the harmonic mean just described, in which case
the distance Ri is from the tree through the sample
point to the edge of the polygon. This simplifies
field work.

3) Measure Ri, as an estimate of a circle radius equal
to the polygon area. The average of these squared
radii (weighted harmonically, if necessary) is R2

a.

(R2
a × π) then estimates the average polygon area

around individual trees.

4) From this, the number of trees/ha can be calcu-
lated.

Other estimates of volumes, values and other charac-
teristics are similarly best imagined geometrically, but
will be more fully described in future papers. To those
who are familiar with Variable Plot sampling, these
are easily imagined as Volume to Basal Area Ratios
(VBARs). When averaged, these can simply be mul-
tiplied by stand area in order to produce totals for the
tract.

It is relatively easy to do such calculations. The
main deviation from previous work comes from viewing
the problem as a sample of various size circles, rather
than using any assumption at all about tree distribu-
tion. Note that there is absolutely no restriction at all
on the distribution of trees.

At this point, we have the same form of equation as
has always existed for point to plant areas and numbers
per hectare. The only difference is that the circle area
derived from point to the plant distances (ri) was dou-
bled. This was used because when we choose a random
point in a circle, the average area of (r2

i ×π) is 1/2 of the
area (R2

i × π).
The problem with this historical estimator is that it

is quite variable. The distance to objects can obviously
be very small, and when dealing with reciprocal squares
this caused high variability. There was a way to solve
this problem, and it involved going beyond the nearest
tree, which might be quite close, and going to the 2nd,
3d or more generally the “nth nearest-tree”.
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This problem is also best viewed as a geometry prob-
lem. Although some have apparently viewed this dis-
tance to the nth tree as a kind of “plot radius” (Lynch,
2003), I believe that this does not provide insight into the
actual geometry. Lately, several authors, for instance
Magnussen (2008) and Kleinn (2006) deduced that this
involved “order-k” Voronoi polygons (Okabe, et al, 1999,
chapter 3, page 152) around trees, but admitted that
calculating these in the field was even more impractical.
Indeed, measuring the polygon is too awkward to con-
template, but sampling for it is not. Using many trees
in a larger polygon, rather than just one nth-nearest tree
certainly complicates imagining the geometry.

If you consider the Voronoi polygons around the near-
est tree, and ask what is the polygon where this tree
is the “2nd-nearest-tree”, the geometry begins to clear
up. In this illustration, I have taken the polygons for
trees bordering an example tree and calculated the parts
of these where the example tree is the 2nd-nearest-tree.
This can be done by hand, and I am sure that it could
be done quickly and more accurately by a GIS sys-
tem, which would be especially necessary for larger “nth-
nearest” situations. The analysis depends upon individ-
ually eliminating trees, then dividing that tree’s poly-
gon among other trees. This process adds what I will
call “slivers” along the edge each of the original Voronoi
polygon. It is within these slivers that the tree is the
2nd-nearest-tree. You do not need to know this area or
the boundaries, because you know when you fall into
that polygon (because that example tree is the second
closest), but visualizing the geometry reveals a lot about
why it works well.

The graph from this process produces a “halo” (Fig. 3)
of slivers which surrounds each tree. Here they are illus-
trated around just one of the trees.

The consequence of this is that the starting point for
the distance to the “n-th nearest-tree” must lie within
these slivers. The outer border of the halo forms a new
polygon consisting of the inner original polygon plus the
added slivers. On the average, these larger polygons are
exactly twice the size of the inner polygons describing
the nearest trees. The smaller slivers add up to exactly
the tract area, and are all allocated to one and only
one tree. The interior parts of the original “nearest-
tree” polygon would be divided into slivers which would
select some other tree as the 2nd-closest. Therefore, the
original polygons plus the sliver areas that border them
amount to twice the area of the tract, and with the same
number of trees those polygons have an average exactly
twice as large.

We therefore have the same solution as before. If we
measure the radius to the edge of this larger polygon,
then calculate the average area, we will estimate twice
the area of an average nearest-tree polygon. The same
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Figure 3: A “halo” of slivers forms along the border of
the original polygon to indicate where it would be chosen
as the “second-closest” tree.

process is used, but the area is just divided by two before
you calculate numbers of trees. The same reasoning, of
course, applies to the 3rd, 4th or nth closest tree. The ha-
los of slivers get thinner, and occur at greater distances
from the tree. The slivers tessellate the area as if they
were a large stained-glass window with interlacing halos
of different colors, each assigned to different trees.

What we would prefer is the distance from the tree
to the edge of this larger polygon (Ri), but the simple
distance from the random point to the tree (ri) is at least
restricted by the width of the slivers along the border
of the polygon. This shorter distance, if used directly,
would lead to an estimate of an average polygon which
is too small, and therefore would estimate too large a
number of trees. Although any bias from using ri rather
than Ri may be smaller, and although it reduces as we
go to the 4th, 5th, 6th tree and so on, we would prefer the
distance Ri because it is unbiased. To find the actual
polygon edge of the larger polygon we should back away
from the tree until it ties with another tree as the “nth

closest tree”.
The bias caused by using a shorter distance (ri) has

caused some to suggest that an additional distance be
added to each measurement, which can reduce the bias.
This was usually visualized as using a slightly larger
“fixed plot” with the n trees inside it, since the distance
barely includes the nth tree. I do not think that this
view is useful for understanding the process, but some
adjustment would clearly help to reduce the bias.

When using the nth closest tree approach the variabil-
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ity has been reduced, and at some point the bias becomes
negligible because these slivers are too slim to create a
great deal of difference in the distance to the sample
point versus the correct distance to the polygon edge.
It is a classic tradeoff, an unbiased method that is more
awkward in the field compared to a biased estimate that
is relatively stable and has simple field measurements.

I must admit to being one who would use the biased
method. On the other hand, what would happen if we
had a simple instrument or method that would tell us
when we crossed that invisible boundary where the tree
went from the nth nearest to the (n+1)th nearest? We
would then have an unbiased system with desirable vari-
ability characteristics. All we need to be aware of this
possibility is to view the geometry in such a way as to
see the actual situation. Bitterlich found a way to tell
when he was inside an invisible circle that was a multi-
ple of the stem area without distance measurements or
calculations, by simply using an angle to view the tree.
When we look at the nearest-tree process as a geometry
exercise, perhaps someone else will show similar ingenu-
ity. There are obvious extensions of this geometric view
to other items besides simple tree numbers. I think that
this view is general, useful, and puts the mathematics
into context in a way that pure mathematical approaches
do not.

It was a large breakthrough when the scientific com-
munity discovered the concept of analytic geometry.
Have we forgotten the geometry part of that insight?
I think that perhaps we have. The reason that this
problem has essentially gone unsolved for so very long is
that it does not yield readily to a purely mathematical
solution without the geometrical insight. Variable Plot
sampling was an enormous breakthrough in forest sam-
pling. I believe that this was because it was essentially
a geometrical problem solved by a geometrical insight.
I think the nearest-neighbor problem is the same, and
that there are still many problems like these.
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