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Abstract. A reaction-diffusion model for a temporally variable and spatially heterogeneous environment
is developed to mathematically describe the spatial dynamics of water hyacinth and the interacting
populations of the various life stages of the Neochetina eichhorniae weevil as a biological control agent on a
bounded two-dimensional spatial domain. Difficulties encountered during the implementation of the model
in Matlab are discussed, including the implementation of time delays and spatial averaging. Conceptual
validation tests indicate that the model may succeed in describing the spatio-temporal dynamics of
the water hyacinth and weevil interaction. A modelling framework is thereby provided to evaluate the
effectiveness of different biological control release strategies, providing guidance towards the optimal
magnitude, timing, frequency and distribution of agent releases. Numerical results confirm the hypothesis
that the seasonal timing of releases have a significant influence on the success of the control achieved.
However, in order to ascertain the degree to which the model output realistically represent the real life
water hyacinth and weevil interaction, predictive validation tests are proposed for further research.
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1 Introduction

Water hyacinth, Eichhornia crassipes (Martius)
Solms-Laubach (Pontederiaceae), has since the 1880s
been distributed from its Amazonian origin to all parts
of the world. Today it is regarded as one of the world’s,
as well as South Africa’s, worst aquatic weeds. With
its exponentially high growth rate, water hyacinth rules
still or slow-moving water bodies by forming dense im-
penetrable mats across the surfaces, having serious con-
sequences for man and animal. Given enough space and
favourable growing conditions (tropical weather, warm
temperatures and water with high nutrient levels), the
number of plants may double in a matter of a week,
giving water hyacinth the ability to outgrow any native
species occurring in the system. Seeds can remain vi-
able after 15 – 20 years of remaining in water sediments
[12, 15]. These characteristics make water hyacinth an
extremely difficult weed to control.

Over the past century, mechanical, chemical and
manual control methods proved to be both very expens-
ive and ineffective, especially for large infested water
bodies. These concerns motivated a more serious con-
sideration of the use of biological control methods [13].

Biological control entails the sourcing of natural enemies
from the weed’s native land and putting them through
quarantine where their host specificity is assessed. If
proven to be host specific, they are certified for release
as biological control agents (BCAs) for the specific weed.
Candidate species are then released in the new habitat
where they feed on the weed, thereby contributing to the
suppression of the alien plant population. After extens-
ive research began in Argentina in 1961, the first water
hyacinth host-specific natural enemies were released as
BCAs in the USA in the early 1970s. Since then several
BCAs have been released in 33 countries [13]. Biological
control trumps other methods by offering a more sus-
tainable, long-termed, environment-friendly and more
affordable solution to the water hyacinth problem, even
for large or inaccessible areas [10].

Apart from the classical biological control approach,
where BCAs are released in the field directly out of quar-
antine, the use of mass rearing technology in biological
control has become more common. BCAs that have
been cleared from quarantine are taken to a mass rear-
ing facility where aquatic weed BCAs are reared in large
numbers on their host plants in portable pools, mak-
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ing more frequent releases possible in order to speed up
biological control [3]. Inadequate release methods may
cause non-establishment of BCAs or unsuccessful con-
trol [10]. Therefore, implementing the best timing, fre-
quency, magnitude and distribution for releases are vital
to a successful biological control programme.

The biological control of water hyacinth in South
Africa currently relies on six agents of which the
popular Neochetina eichhorniae Warner (Coleoptera:
Curculionidae) weevil species is considered in this pa-
per. The sound and effective management of the wa-
ter hyacinth weed remains a challenge in South Africa
[3]. A local mass rearing facility from the Cape
Town Invasive Species Unit in Westlake commenced
with weekly releases of BCAs at the nearby Kuils-
river site in March 2015 [14]. After one and a half
years of BCA releases, consisting of mostly Megamelus
scutellaris Berg (Hemiptera: Delphacidae) (more than
380 000) and a few Neochetina bruchi Hustache (Cole-
optera: Curculionidae) weevils (about 2 600), the site
was still completely covered with water hyacinth, with
little evidence of the impact of BCAs. Suggestions to-
wards more effective release strategies for different tem-
perature conditions may aid in improving the control of
the weed. Byrne et al. [2] agrees that flawed or inap-
propriate release procedures contribute to the variable
success of biological control programmes for water hy-
acinth. It is hypothesized that the timing of releases,
both in terms of seasonality and frequency of releases,
have a significant influence on the success of the control
achieved.

In this paper, a mathematical model, describing the
water hyacinth and N. eichhorniae weevil population
growth, dispersal and interaction in a temporally vari-
able and spatially heterogeneous environment, is pro-
posed to provide guidance towards how the weevils can
be optimally utilised as BCA in South Africa. Model
simulations may be used to investigate the efficiency of
different BCA release strategies for different temperat-
ure conditions, and given the environmental conditions,
to provide guidance towards the optimal magnitude, fre-
quency, seasonal timing and spatial distribution of BCAs

releases. In addition, model simulations may be used to
predict whether or not a specific agent will be able to
establish in the area of interest. The model presented in
this paper builds on previous work by Wilson [21], who
presented a stage-structured plant-herbivore model, in-
vestigating the population dynamics of water hyacinth
and the interaction with the N. eichhorniae weevil as
BCA in one dimension. The temporal mean-field model
developed by Wilson [21] is not realistic in assuming that
weevils are uniformly distributed throughout an area,
while in reality BCAs are released along the edges of an
infested water body. A spatially explicit model is there-
fore required to model the distribution of water hyacinth
and the weevils in a heterogeneous environment.

2 Modelling approach

The following assumptions concerning the modelling
of the water hyacinth and weevil species are made in this
paper.

1. Stage-structure. The N. eichhorniae weevil pop-
ulation is represented by five development stages
(Fig. 1), while the water hyacinth population is con-
sidered at its mature stage to examine the influence
of the weevils on an established water hyacinth pop-
ulation. Individuals in the weevil population enter
a stage by developing from the previous stage or
by reproduction from the mature stage and leave
a stage through death or maturation. By adding
stage-structure, the model accounts for more bio-
logical detail of the weevils and allows for the ex-
plicit modelling of processes pertaining only to spe-
cific development stages, making it a more realistic
representation. The number of equations necessary
to represent the weevil population is limited to the
number of development stages that have density-
dependent processes. In this paper, similar to the
temporal model developed by Wilson [21], the two
larval stages and the adult stage are considered suf-
ficient to represent the weevil population.

2. Plant growth. Several factors affecting the growth of
the water hyacinth are not included in the model as

Eggs (E)
Young

larvae (L1)

Old larvae

(L2)
Pupae (P ) Adults (A)

mature mature mature mature

mortality mortality mortality mortality mortality

reproduce

Figure 1: Diagram of the N. eichhorniae weevil’s development stages as used in model development.
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it is difficult to quantify. These factors include frost,
diseases, saltiness of water, wind, humidity, water
currents, floods, light and carbon dioxide concen-
tration [12, 21]. Constant nitrogen and phosphorus
levels are assumed throughout the study.

3. Damage factor. While both the N. eichhorniae lar-
vae and adults feed on water hyacinth, it is assumed
that only the old larvae cause actual damage to the
plant. In addition to the removal of biomass, tun-
nelling of larvae into the petioles and the crown of
the plant can cause nutrient deficiency as well as
provide a route of entry for disease-causing micro-
organisms. The movement of larvae between leaves
and the crown of the plant may also lead to flood-
ing of larval tunnels and a reduction in plant buoy-
ancy [21]. Feeding by adults on the outside of the
leaves does not directly affect the rhizome or the
meristem of the plant, both of which may be dam-
aged by larval feeding. In most cases, adult feeding
appears to be much less destructive to water hy-
acinth and is thought to be negligible compared to
damage caused by old larvae [4, 21].

4. Ovipositing. Adult weevils are assumed to start lay-
ing eggs immediately after they enter the system
and continue to oviposit at a constant rate through-
out their lifetime. The oviposition rate is adjusted
accordingly to allow females to lay the approxim-
ated maximum amount of eggs during their lifetime.

5. Reproduction. When adult density within a con-
sidered area decreases below a minimum threshold,
it is assumed that they will not be able to reproduce
any longer. There has to be a sufficient number of
adults within a reachable range of each other for
reproduction to occur.

6. Density dependence. From experiments and per-
sonal observations, Wilson [21] found it reasonable
to assume that due to adult weevil mobility, the fe-
male weevils will oviposit regardless of density, res-
ulting in density-independent oviposition and egg
survival rates for any realistic density of adults per
plant. Due to the relative mobility of old larvae,
the through-stage survival rates of the old larval
and pupal stages of the weevil’s life cycle are also
assumed unaffected by density. Density-dependent
mortality is only added to the young larval popula-
tion as Wilson [21] found that most density depend-
ence occurs before damage is caused to the plant.
At high larval densities, young larvae may have a
higher probability of being stranded in decaying
leaves. It is assumed that adults have abundant
supplies of any limiting nutrient.

7. Dispersal. The presented spatio-temporal model as-
sumes that individuals in the mobile development
stages of the weevil population perform an unbiased
random walk. This assumption concurs with pre-
vious studies which found that weevils randomly
disperse throughout a water hyacinth mat without
any apparent preference for particular areas of the
plants [9]. During each time unit, a proportion of
old larvae and adult weevils are assumed to leave
their current location to inhabit neighbouring sites
within their reach. This motion can be modelled in
terms of Fickian diffusion and is approximated by
using the Laplacian operator. The water hyacinth
dispersal is also described by Fickian diffusion as
weed mats randomly expand to neighbouring sites.

8. Domain. For the demonstrative purpose of this
study, the spatial domain is assumed to be an isol-
ated rectangular water body infested with water hy-
acinth to its carrying capacity, surrounded by land
use categories considered unsuitable habitat for wa-
ter hyacinth or N. eichhorniae weevils. It is thus as-
sumed that neither plant nor weevil enters or exits
the domain. The spatial domain is considered het-
erogeneous as the plant or weevil densities may vary
for different locations due to the fact that weevils
are not uniformly spread across an area.

9. Releases. Adult weevils are released by hand from
small plastic containers at the accessible edges of
an infested water body and take time to disperse
to neighbouring sites. In some cases, boats may be
used for releases on larger water bodies. Releases
are assumed to occur once off or at a constant rate
over the period of release. The distribution of the
releases may be influenced by the accessibility to the
infested area and the number of available BCAs.

2.1 Model formulation and notation Let
W (ξ, t) denote the biomass density of wa-

ter hyacinth material (in kg/unit2) at location

ξ = [ξ1, ξ2]
T ∈ D at time t, where D is a closed,

two-dimensional spatial domain, and E(ξ, t), L1(ξ, t),
L2(ξ, t), P (ξ, t) and A(ξ, t) denote the densities of
eggs, young larvae, old larvae, pupae and adult weevils
at location ξ at time t, respectively. Similar to the
modelling approach for a variable survival rate used
in previous studies [8, 21], let SL1

(ξ, t) denote the
density-dependent through stage survival rate for young
larvae at location ξ at time t. All other development
stages are assumed to have density-independent per
capita death rates, yielding constant survival rates.
Time delays are modelled as differences from the current
time t and subscripts indicate the stage involved, e.g.
the development duration of the egg stage is denoted
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by tE . The time spent in each stage of the weevil’s life
cycle is temperature-dependent.

In order to model the spatial dynamics of the wa-
ter hyacinth and weevil system in a bounded two-
dimensional spatial domain, diffusion terms are added
to the applicable ordinary delay differential equations
in the temporal model presented by Wilson [21]. Let
the diffusion coefficients dW , dL2(θ) and dA be a meas-
ure of how effectively water hyacinth, old larvae and
adult weevils disperse between neighbouring locations,
respectively, invariant in time and space. In addition,
an Allee-effect and a term allowing for frequent releases
of adult weevils are included, a more detailed temperat-
ure dependence is incorporated, as well as slight changes
to the modelling of the through stage survival probab-
ilities. Furthermore, a different approach towards the
modelling of the recruitment and maturation terms for
the weevil population is followed and a sufficient expres-
sion for the old larval maturation term with dispersal is
derived.

Let Ri(ξ, t) denote the rate of recruitment into stage i
of the weevil’s life cycle at location ξ at time t. The rate
of recruitment into the young larval stage at location ξ
at time t is equal to the number of eggs maturing at the
corresponding location and time. The number of eggs
maturing is the number of eggs laid at location ξ and
tE(θ) days ago – the number of adults present at that
location tE(θ) days ago multiplied by the oviposition
rate – multiplied by the probability of surviving through
the egg stage. The young larval recruitment rate is lim-
ited by an Allee-effect, resulting in a decrease of the
young larval population growth rate at low adult weevil
densities. Once the adult population within a considered
area of 1 m2 falls below the minimum threshold for re-
production, a, the negative instantaneous growth rate
of the young larvae leads to the extinction of the pop-
ulation. The Allee-effect may cause slower spread and
decreased establishment likelihood of BCAs, influencing
the efficacy and cost of biological control. Expected spa-
tial ranges, distributions and patterns of species may be
altered when an Allee-effect is present [19], making this
an important effect to consider. The rate of maturation
out of the young larval stage at location ξ at time t,
which is equal to the recruitment rate into the old larval
stage at location ξ at time t, is simply the recruitment
rate into the young larval stage at time t− tL1

(θ) multi-
plied by the probability of surviving through the young
larval stage. The same logic is followed for the recruit-
ment and maturation rates of the other weevil develop-
ment stages, except for the maturation rate out of the
old larval stage where diffusion is involved. The time-
delay term for this rate of maturation must be derived
in a different way because an old larva can move during
the period between entering the system and maturing

to the next stage and is therefore expected to enter the
pupal stage at a point in space different from where it
originally emerged. The recruitment rates used in the
model are given by

RL1

(
ξ, t
)

= q(θ)A
(
ξ, t−tE(θ)

)
σE(θ)

A
(
ξ, t−tE(θ)

)
− a

A
(
ξ, t−tE(θ)

)
, (1)

RL2

(
ξ, t
)

=


RL1

(
ξ, t−tL1 (θ)

)
SL1

(
ξ, t
)

if

RL1

(
ξ, t−tL1

(θ)
)
> 0,

0 otherwise,

(2)

RP

(
ξ, t
)

= R̄L2

(
ξ, t
)
σL2 (θ), (3)

RA

(
ξ, t
)

=RP

(
ξ, t−tP (θ)

)
σP (θ), (4)

where θ denotes the temperature (in ◦C), q(θ) the
rate of oviposition of viable eggs at temperature θ,
ti(θ) the development duration in days of stage i of the
weevil’s life cycle at temperature θ and σi(θ) the density-
independent through stage survival probability for stage
i at temperature θ. The calculated development dura-
tions of immature stages at different temperatures are
given in Table 1.

Table 1: Development duration of weevil life stages,
measured at different temperatures.

Development duration (in days)

Temp (◦C)
Eggs
(tE)

Young
larvae
(tL1

)

Old
larvae
(tL2

)

Pupae
(tP)

16.00 44.00 47.00 35.00 33.00
20.00 24.00 47.00 25.87 29.85
25.00 12.00 28.85 14.42 19.90
30.00 8.00 20.00 10.00 14.93
35.00 16.00 40.00 20.00 29.85
39.00 44.00 47.00 35.00 33.00

Provided the maximum probability of surviving
through stage i, attained from Wilson [21], the change in
the survival probabilities σi(θ) as a result of changes in
temperature was determined and is shown in Figure 2.
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Figure 2: Through stage survival probabilities, meas-
ured at different temperatures.
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The reaction-diffusion model for the interacting spe-
cies, formulated as a system of coupled delay partial dif-
ferential equations (PDEs), linked to the set of algebraic
equations (1) – (4), is given by

∂W (ξ, t)

∂t
= dW∇2W (ξ, t) + r(θ)W (ξ, t)

(
1−

W (ξ, t)

K

)
− cL2

(θ)L2(ξ, t)

(
W (ξ, t)

W (ξ, t) +H

)
,

(5)

∂L1(ξ, t)

∂t
= RL1

(
ξ, t
)
−
(
µL1 (θ) +

JL1

W (ξ, t)
L1(ξ, t)

)
L1(ξ, t)

−RL2

(
ξ, t
)
,

(6)

∂L2(ξ, t)

∂t
= dL2

(θ)∇2L2

(
ξ, t
)

+RL2

(
ξ, t
)
− µL2

(θ)L2(ξ, t)

−RP
(
ξ, t
)
,

(7)

∂A(ξ, t)

∂t
= dA∇2A

(
ξ, t
)

+RA

(
ξ, t
)
− µA(θ)A

(
ξ, t
)

+ IX
(
ξ, t
)
,

(8)

∂SL1(ξ, t)

∂t
= SL1

(
ξ, t
)
JL1

(
L1(ξ, t−tL1 (θ))

W (ξ, t−tL1
(θ))

−
L1(ξ, t)

W (ξ, t)

)
, (9)

where ∇2 ≡ ∂2

∂ξ12 + ∂2

∂ξ22 denotes the Laplacian oper-

ator for diffusion, r(θ) the daily intrinsic growth rate
of the plant at temperature θ and K the carrying ca-
pacity (kg/unit2) of the water resource. Furthermore,
cL2(θ) denotes the rate of damage caused by the older
larvae at temperature θ and H the plant density at
which herbivore feeding is reduced by half. Paramet-
ers q(θ), r(θ),K, cL2

(θ), H and JL1
were obtained from

Wilson [21].

Assuming a given young larva competes equally with
all other young larvae for limited resources, Gurney
et al. [8] suggested to reflect this limitation by choos-
ing a per capita young larval death rate which var-
ies linearly with young larval population. In line with
Wilson’s application of this modelling approach [21],
the young larval density-dependent mortality rate is

given by
JL1

W (ξ,t)L1(ξ, t), where JL1 denotes the density-

dependent scaling parameter for young larvae which is
equal to the number of kilogrammes of plant material
per young larva at which the young larval population
growth rate is zero. In equations (6) – (8), µi(θ) de-
notes the daily density-independent mortality rate for
stage i (i = L1, L2 or A) of the weevil’s life cycle at
temperature θ and is given by

µi(θ) =

 −
ln(σi(θ))
ti(θ)

if σi(θ) > 0

1 otherwise.

Finally, I denotes the number of new adult weevils
released per location at any time and

X(ξ, t) =


1 if BCAs are released at location ξ

at time t
0 otherwise.

(10)

Since the state variables W (ξ, t), L1(ξ, t), L2(ξ, t) and
A(ξ, t) represent population densities, they are set to
be non-negative real numbers for obvious reasons. The
density-dependent survival rate, SL1

(ξ, t), is assumed to
have a lower bound of zero and an upper bound equal
to the density-independent through stage survival rate
for young larvae, σL1(θ).

Based on Gourley & Kuang’s [5] formulation of a
bounded one-dimensional single-species diffusive-delay
population model, the time-delayed maturation term for
the old larval stage where there is diffusion is derived for
the model in a closed, two-dimensional spatial domain D
with homogeneous Neumann boundary conditions. For
simplicity’s sake, studies in literature only demonstrate
the derivation of the delay term for a one-dimensional
domain [5, 7], only mentioning that it should be pos-
sible to carry out numerical simulations in higher space
dimensions.

In algebraic equation (3), the weighted average of RL2

at an earlier time is given by

R̄L2

(
ξ, t
)

=

∫
D
G
(
ξ, x, tL2(θ)

)
RL2 (x, t−tL2(θ)) dx, (11)

where x is another point in space. Old larvae will have
emerged at various locations (x) in domain D and may
have moved around, being at point ξ on maturing to

the pupal stage. The quantity R̄L2

(
ξ, t

)
σL2(θ) gives the

rate at which old larvae mature into the pupal stage
at location ξ and time t, having taken tL2

(θ) days to
mature. The spatial averaging function G(ξ, x, t) is the
solution of

∂G

∂t
= dL2(θ)∇2G, (12)

subject to homogeneous Neumann boundary conditions
and initial conditions given by

G(ξ, x, 0) = δ(ξ − x), (13)

where δ is the Dirac delta function and ∇2 the Lapla-
cian computed with respect to the first argument of
G(ξ, x, t). The Dirac delta function, δ(ξ − x), has the
value 0 for all ξ 6= x and 1 for ξ = x. Furthermore,

function G(ξ, x, t) > 0 for all t > 0. If RL2

(
ξ, s

)
≥ 0

for all ξ ∈ D and s ≤ t, then R̄L2

(
ξ, t

)
≥ 0. This

follows from the positivity of G. Although the expli-
cit expression of the spatial averaging kernel G(ξ, x, t)
is difficult to compute (or unknown) for the bounded
two-dimensional case, literature indicates that it is only
necessary to know that the function G is the solution of
equation (12) subject to (13) [1, 7].
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According to Gourley & Kuang [6], the existence
of solutions to one-dimensional delay reaction-diffusion
systems, similar to the one described in equations (5) –
(9), which is already more complex due to being in two
dimensions, have yet to be established. It is therefore as-
sumed that a solution to the presented model exists and
the focus in the rest of the thesis is turned towards how
the model may be applied to optimise water hyacinth
biological control release strategies.

A limitation of the time-delayed modelling approach
is that time lags allow weevil populations to still exist
for a period of time at a specific location after the plant
has been driven to extinction at that point in space, as
density dependence in terms of limiting resources is only
added to the young larval stage. There is a delayed dens-
ity dependence effect on the other weevil development
stages. In the long term, these delayed effects become
negligible and the model still succeeds in providing good
estimates of the overall population dynamics.

2.1.1 Boundary conditions Since water hyacinth
cannot exist on land and N. eichhorniae weevils are host-
specific BCAs, only able to survive on water hyacinth, it
is assumed that neither plant nor weevil enters or exits
the domain. System (5) – (9) is therefore subject to
homogeneous Neumann boundary conditions given by

n · (D⊗∇u) = 0, ∀ξ ∈ ∂D, (14)

where n is the outward normal vector on the boundary,
D the diffusion coefficient matrix, u the solution of the
system and ∂D the boundary of D.

2.1.2 Initial conditions Initially the water hy-
acinth density is assumed to be at carrying capacity
(K = 70 kg/m2) throughout the whole domain under
consideration (D) and all weevil stages are assumed ab-
sent prior to BCA releases. A certain amount of adult
weevils will be released at specific locations at the edges
of the domain at time t = 0. The initial conditions for
system (5) – (9) are thus given by

W (ξ, t) = K, for t ≤ 0, ∀ξ ∈ D

L1(ξ, t) = 0, for t ≤ 0, ∀ξ ∈ D

L2(ξ, t) = 0, for t ≤ 0, ∀ξ ∈ D

A(ξ, t) = 0, for t < 0, ∀ξ ∈ D

A(ξ, 0) =

{
I if X(ξ, 0) = 1

0 otherwise

SL1(ξ, t) = σL1(θ), for t ≤ 0, ∀ξ ∈ D,

(15)

where K, I and σL1
(θ) are assumed to be positive real

numbers.

3 Software implementation

The model was implemented in Matlab 9.0 (R2016a)
where the system of coupled delay PDEs in a bounded

two-dimensional spatial domain is solved using tools
from the PDE toolbox and its built-in functions [20].
Various difficulties encountered during the implementa-
tion process are discussed below.

1. System formulation. Firstly, the equations had to
be put in the correct form in order to be able to use
tools from Matlab’s PDE toolbox to solve the sys-
tem of PDEs, since the toolbox does not have the
option for solving nonlinear parabolic PDEs. For
each equation, the linear part is put on the left-
hand side and the nonlinear part on the right-hand
side of the equation. Similar to an approach used by
Howard [11], the nonlinearity is taken as a driving
term from the previous time step and the remain-
ing linear equations are decoupled so that 5 single
equations are solved rather than a system. Provided
the initial conditions, solution times, boundary con-
ditions, mesh parameters and various PDE coef-
ficients, the built-in parabolic function produces
the solution to the finite element method1 formula-
tion of the PDE problem. The parabolic function
creates finite element matrices corresponding to the
problem internally and calls ode15s to solve the res-
ulting system of ordinary differential equations.

2. Time lags. Since the built-in functions do not allow
for time lags, history matrices containing the solu-
tions to the system at all previous time increments
are constructed to determine the partial derivative
of a function where the solution at a certain time
depends on the values of the function at previous
times.

3. Spatial averaging. Spatial averaging for the old lar-
vae stage, involving both time delay and diffusion,
had to be implemented. An explicit expression for
the spatial averaging kernel G

(
ξ, x, tL2

(θ)
)

in equa-
tion (11) in the bounded two-dimensional case does
not exist. Therefore, the expression for the spatial
averaging kernel for the unbounded case is used in
the implementation and the effect of each reflecting
boundary (homogeneous Neumann boundary con-
ditions) is accounted for manually. Following an
approach used by Powell [16], the effect of reflecting
boundaries are simulated by creating artificial pop-
ulations of dispersers on the outsides of the bound-
aries, which, when they disperse back toward the
original grid, will add to the original population
the individuals that “reflected” from the bound-
aries. This is accomplished by first reflecting the

1The finite element method (FEM) is a numerical technique for
finding approximate solutions to PDEs when finding their solu-
tions by analytical means is impossible. FEM subdivides a large
problem into smaller, simpler parts and approximates a solution
to the problem by minimising an associated error function [18].
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data of the original grid over each boundary, storing
the reflections together with the original grid (nine
grids in total) in an artificial grid and considering
the new grid as an infinite domain. Spatial aver-
aging is then performed over the entire new grid.
Finally, the original grid is extracted to obtain the
population of interest. The effect of what happens
at each boundary of the original grid is illustrated
in Figure 3, with a reflecting boundary at 0. The
red line resembles the initial population at time 0,
blue the dispersal of the original population after
a certain time period, green the dispersal of the re-
flected population and magenta the final population
of interest, which is the population after dispersal,
taking the reflecting boundaries into account. The
final population distribution (magenta) is the sum
of the original (blue) and reflected (green) popula-
tion densities for each location within the original
grid.
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Figure 3: Illustration of how the effect of a reflecting
boundary is accounted for in the model.

The recruitment rate RL2
(x, t−tL2

(θ)) is con-
sidered as the initial population for the old larval
stage. The individuals disperse randomly accord-
ing to the distribution g. Derived from the one-
dimensional unbounded expression provided in [5, 6]
and similar to an expression used by [16], the spatial
averaging Gaussian kernel g for the two-dimensional
unbounded case is given by

g(ξ, tL2(θ)) =
1

4πdL2tL2(θ)
e−(ξ21+ξ

2
2)/4dL2

tL2
(θ), (16)

with parameters as defined in §2.1. The final pop-
ulation distribution after tL2

(θ) days is given by∫∞
−∞

∫∞
−∞ g(ξ, x, tL2(θ))RL2 (x, t−tL2(θ)) dx

= RL2(ξ, t−tL2(θ)) ∗ g(ξ, tL2(θ)),
(17)

where the latter operation is called the convolution.
Algorithm 1 describes the spatial averaging process.

4. Frequent releases. Implementing frequent releases
for the spatially explicit domain proved to be more

Algorithm 1: Spatial averaging for old larval stage

Input : Distribution of L2 as they enter the stage at
an earlier time, mesh coefficients, development
duration of L2 stage, L2 diffusion rate.

Output: Distribution of L2 ready to mature at current
time.

Create two-dimensional a× b grid of geometry;1

Create triangular mesh of grid;2

Set RL2 (i, t−tL2(θ)) as initial population for each3

node i of the grid;
Define expression g given in Eq. (16) for spatial4

averaging kernel over entire mesh;
Normalise kernel using the built-in trapz function;5

// g/trapz(trapz(g))
Perform Fast Fourier Transform of g in two6

dimensions for convolution in Eq. (17); // fft2(g)
Create reflections of the original grid data over each7

boundary;
Store the reflected grids together with the original grid8

in a new 3a× 3b grid in their corresponding positions;
Perform dispersal on the entire 3a× 3b grid;9

Extract the original grid’s data;10

challenging than for the spatially implicit case, es-
pecially concerning the locations of releases. Re-
leases cannot occur at constant points in the spatial
domain as after a period of time the plant may not
exist at those points anymore, making it senseless to
continue releases at the original points. To account
for this, the function of the variable X(ξ, t) in equa-
tion (10), indicating whether or not a release occurs
at location ξ at time t, is essentially being imple-
mented by executing two separate procedures. The
first procedure determines the time increments at
which releases are permitted (1 if permitted, 0 oth-
erwise) and the second procedure validates the loca-
tions of releases (1 for a valid location, 0 otherwise).
Concerning the latter procedure, an algorithm was
constructed to search for the closest points to the
original points of release where there exist sufficient
plant densities for releases. The search may be con-
ducted either straight in the direction of the centre
of the domain (Fig. 4(a)), or first to the right of the
original points of release before it proceeds to the
next row towards the centre of the domain, where
it again will search to the right and so the process
will continue until it reaches the centre of the do-
main (Fig. 4(b)). Figure 4 illustrates an example
of adult releases at the midpoints of each of the
four edges of a square domain, with arrows indicat-
ing the two options for the directions in which the
algorithm may proceed when searching for feasible
points of release at each edge of the geometry once
plant densities become insufficient at the original
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Figure 4: The two options for the direction in which
searches for feasible points of release may be conducted
when frequent releases are involved.

points of release. Since there was not a significant
difference in the outcome between the two search
options, the search straight to the centre of the do-
main was implemented in the interest of multiple
releases per edge, where BCAs are already distrib-
uted along an edge and releases to the sides of the
original positions become redundant. In the main
algorithm where the system of PDEs is solved (Al-
gorithm 2), a release is implemented as an addition
of I to the right-hand side of the adult weevil popu-
lation equation if both the required constraints are
met at the considered time and location.

In light of these difficulties, let equations (5) – (9),
governing the change in W (ξ, t), L1(ξ, t), L2(ξ, t), A(ξ, t)
and SL1

(ξ, t), respectively, be the five PDEs being solved
in the main procedure (Algorithm 2), assuming para-
meters and variables as defined in §2.1. Let Un be the
history matrix for the time-dependent results of the nth

PDE.
The water hyacinth and weevil system incorporates

variable temperature. Algorithm 3 gives more insight
into the process being carried out when the TempDep

function is called in lines 6 and 13 of the main algorithm.
The temperature-dependent parameters used in sys-
tem (5) – (9) are r(θ), cL2(θ), q(θ), dL2(θ), tE(θ), tL1(θ),
tL2(θ), tP (θ), σE(θ), σL1(θ), σL2(θ), σP (θ), µL1(θ),
µL2

(θ) and µA(θ). As described in Algorithm 3, the
values of these parameters are updated at the beginning
of each month when a new average temperature is set.

Algorithm 2: Solving the system of PDEs

Input : Total running time, starting month, magnitude of
releases, release frequency, points of release,
Allee-effect threshold, initial conditions.

Output: Solutions to the PDEs at every node for every time
increment.

Create two-dimensional grid of geometry;1

Assign boundary conditions given in Eq. (14) to edges;2

Create triangular mesh with m nodes;3

Create time vector with M time-stepping increments;4

Assign constant values to K and JL1
used in Eqs. (5)–(9);5

Call temperature-dependent parameter values for starting6

month; // TempDep(month,1)
for i← 1 to m do7

Set initial conditions given in (15) for Eqs. (5)–(9);8

end9

Set initial conditions as first column of each Un;10

for t← 1 to M do11

if time increment a multiple of 30 then12

Update temp. dependent parameter values for13

new month; // TempDep(month,t)

end14

if (t−tE(θ)−tL1 (θ)−tL2 (θ)) > 0 then15

Perform spatial averaging for L2; // Alg. 116

end17

if time increment a multiple of frequency f then18

Allow additions to adult population A at time t19

(1st procedure for Eq. (10));
end20

Determine coordinates for additions to adult21

population A (2nd procedure for Eq. (10));
for i← 1 to m do22

Determine nonlinear interactions for W using23

Eq. (5);
if (t−tE(θ)) > 0 then calculate RL1

(i, t) using24

Eq. (1);
else RL1

(i, t) = 0;25

if (t−tE(θ)−tL1 (θ)) > 0 & RL1 (i, t−tL1 (θ)) > 026

then calculate RL2
(i, t) using Eq. (2);

else RL2 (i, t) = 0;27

if (t−tE(θ)−tL1
(θ)−tL2

(θ)) > 0 then calculate28

RP (i, t) using Eq. (3);
else RP (i, t) = 0;29

if (t−tE(θ)) > 0 then determine nonlinear30

interactions for L1 using Eq. (6);
else nonlinear interactions for L1 = 0;31

if (t−tE(θ)−tL1
(θ)) > 0 then determine32

nonlinear interactions for L2 using Eq. (7);
else nonlinear interactions for L2 = 0;33

if (t−tE(θ)−tL1 (θ)−tL2 (θ)−tP (θ)) > 0 then34

determine nonlinear interactions for A using
Eq. (8);
else nonlinear interactions for A = 0;35

if (t−tE(θ)−tL1 (θ)) > 0 then determine36

nonlinear interactions for SL1
using Eq. (9);

else nonlinear interactions for SL1 = 0;37

end38

Define nonlinear interaction terms for all n PDEs at39

centerpoints of mesh triangles by interpolation using
the built-in pdeintrp function;
Solve all n PDEs with parabolic function;40

Set zero as a lower bound for all solutions;41

Append new solutions to each Un for all n PDEs;42

end43
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Algorithm 3: Temperature-dependent parameters

Input : Starting month, time increments.
Output: Temperature-dependent parameter values,

linear interactions and diffusion coefficients.

Set vector with monthly average temperatures,1

depending on starting month;
if first time increment then // t==12

Set average temperature θ for first month;3

Calculate temp. dependent parameter values;4

Calculate temp. dependent linear interactions for5

Eqs. (5)–(9);
Calculate temp. dependent diffusion coefficients6

for Eqs. (5)–(9);
else if time increment a multiple of 30 then7

// mod(t,30)==0
Update average temperature θ for new month;8

Calculate temp. dependent parameter values;9

Calculate temp. dependent linear interactions for10

Eqs. (5)–(9);
Calculate temp. dependent diffusion coefficients11

for Eqs. (5)–(9);
end12

4 Model calibration and testing

In §4.1 and §4.2, suitable parameter values for the dif-
fusion coefficients for adult weevils and water hyacinth,
respectively, are determined by means of reverse engin-
eering.

4.1 Adult weevil dispersal By means of dispersal
experiments, Haag [9] determined that even in the ab-
sence of flight muscles, adult weevils are able to move
between adjacent plants over a distance of at least 4 m in
a course of one month. Information about adult move-
ment over longer distances is still lacking. It is therefore
assumed that adult weevils travel a maximum distance
of 4 m per month. By means of reverse engineering, a
diffusion coefficient of dA = 0.09 m2/day was obtained.
In Figure 5, the dispersal of adult weevils released within
a 1 m2 area at the edge of an infested water body at time
0, with dA = 0.09 m2/day, is shown as obtained from the
simulation output.

4.2 Water hyacinth population growth Literat-
ure indicates that the water hyacinth surface area may
increase by an average of 8% per day under good
growing conditions [12]. A diffusion coefficient of
dW = 0.08 m2/day reflects this assumed daily surface
expansion. Figure 6 illustrates the population growth of
the weed with the obtained diffusion rate without the
influence of the BCAs. The red line indicates the car-
rying capacity of the water body. Once the plant dens-
ity at a certain location reaches the carrying capacity,
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Figure 5: Adult weevil dispersal over one month with
the derived diffusion coefficient of dA = 0.09 m2/day.
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(b) After eight weeks.

Figure 6: Water hyacinth population growth over eight
weeks without BCA releases.

local reactions can no longer contribute to the popula-
tion growth at that location, but the mat continues to
expand sideways through diffusion. The model therefore
yields realistic results for water hyacinth growth.
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5 Model validation

Conceptual model validation may be described as the
process of proving that the theories and assumptions un-
derlying a model yields results within a sufficient range
of accuracy, and that the model representation of the
real-life problem is sufficient in accordance with the in-
tended purpose of the model. A number of validation
techniques exists of which degenerate tests and face val-
idation are used in this paper [17]. A series of degener-
ate tests were performed to determine whether changes
in certain parameter values yield the expected outcome.
The effect of different magnitudes of adult releases, tem-
peratures, and release frequencies on controlling water
hyacinth are demonstrated in this section. The results
from these tests were also compared to experiences in
practice, thereby performing face validation. In addi-
tion to conceptual validation, these tests demonstrate
how the model may be used as a decision-making tool
for BCA release strategies.

5.1 Effect of different magnitudes of adult re-
leases As a result of more BCAs being present to cause
damage, an increase in the magnitude of a release (I)
is expected to result in a faster decrease in initial plant
density in the short term. For high levels of I, however,
density dependence in the young larval stage is expected
to result in a faster decrease in weevil population dens-
ities compared to lower values of I. In time, decreases
in the weevil populations will result in increases in the
plant population densities again.

Figure 7 shows the effect of different magnitudes of
N. eichhorniae adult weevil releases on the total pop-
ulation densities of water hyacinth and the various life
stages of the weevil over three months. For both sim-
ulations, the applicable number of adults was released
in January at the four edges of a 10 m × 10 m area in-
fested with water hyacinth. Young larvae (L1) appear
tE(θ) days after adult releases and damage-causing old
larvae (L2) tE(θ) + tL1

(θ) days after initial releases. As
the total water hyacinth population decreases due to old
larval feeding, density dependence causes a decrease in
both larval populations, giving the plant time to increase
before the next generation of damaging larvae appear.
As expected, model output suggests that releases of 200
weevils at the edges at time 0 will have a greater effect
on the total water hyacinth population over a period of
three months. Model output also reflects the discern-
ible decreases in water hyacinth populations that were
observed after about 70 days in comparable real life re-
lease scenarios [3].

The long term plant and weevil densities responses
are more variable due to populations being exposed to
density-dependent interactions for a longer period of
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Figure 7: The change in the total plant (W ), young
larval (L1), old larval (L2) and adult (A) population
densities over three months for different magnitudes of
BCA releases.

time, as expected. The model correctly reflects the hy-
dra effect where an increase in the number of BCAs re-
leased does not always result in lower average plant dens-
ity in the long term due to a greater impact of density
dependence on the larval stages when more BCAs are
released, yielding less damage-causing old larvae to sup-
press weed densities.

5.2 Effect of temperature on control of water
hyacinth Temperature (θ) has an effect on the growth
rate of the plant, the weevil oviposition rate, damage
rate, survival probabilities, mortality rates and develop-
ment duration of the weevil stages, as well as the diffu-
sion rate of the old larval stage. For values of θ close
to 30◦C, the plant will grow at a fast rate, accompanied
by a high rate of ovipositing for adult weevils. The de-
velopment time in each weevil life stage will be shorter
than for values of θ deviating from 30◦C, with high sur-
viving probabilities and a high old larval daily diffusion
rate, resulting in initial weevil infestation levels increas-
ing faster. Since old larvae will cause maximum damage
at this level of θ, plant populations are expected to de-
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crease fast once old larvae enter the system. Due to
density dependence, this should in time result in faster
decreases in weevil populations, yielding greater oscilla-
tions of population densities.

Simulations were performed to investigate the effect
on water hyacinth populations in the Cape Town re-
gion when adult weevils are released once-off in summer
(December, with an average high temperature of 25◦C)
or winter (June, with an average high temperature of
18◦C), subject to monthly varying temperatures. Once-
off releases of 1 000 BCAs at time t = 0 at each of
the four edges of a 30 m × 30 m infested water body
were simulated. Figure 8 illustrate the change in total
plant density over six months for summer and winter
releases, respectively. It may be seen that the delay
between subsequent damage-causing old larval genera-
tions gives the weed a chance to grow back. Six months
later, the BCAs that were released during summer are
exposed to colder winter temperatures, but favourable
weather conditions during the first months after releases
supported establishment and BCAs could still contrib-
ute towards the suppression of weed populations during
subsequent colder seasons. Confirming what happens in
practice, results (Fig. 8) indicate that BCAs may not be
able to establish under certain temperature thresholds
due to slower development and higher mortality.
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(a) Summer release.
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(b) Winter release.

Figure 8: The change in the total plant density over a
time period of six months after once-off releases of 1 000
BCAs at four edges in December (a) and June (b).

5.3 Effect of different release frequencies on
the control of water hyacinth A direct relationship
between the frequency f of BCA releases and the adult
weevil population densities is expected. In order to test
whether the implementation of the frequent BCA release
process responds correctly, simulations were performed
with once-off, weekly, two-weekly and four-weekly re-
leases, respectively, with a magnitude of 100 adult
weevils per release at each of the four edges of the con-
sidered domain and with temperature held constant at
30◦C over a period of one year.

As expected, model responses indicate a decrease in
the average plant population density over time when
BCAs are released more often. In Figure 9, the plant and
adult population densities, subject to once-off (f = 0),
low frequency (f = 28) and high frequency (f = 7) re-
leases over the period of one year, are shown. Water
hyacinth populations are suppressed faster the more of-
ten adult weevils are released, as expected. The model
succeeds to accurately reflect the regrowth of the weed
after a period of time, subsequent to being suppressed
to very low densities over the entire domain. Frequent
adult weevil releases are ceased once the weed is sup-
pressed below a certain threshold and resumed when the
weed grows back to sufficient densities for releases. As
expected, higher frequencies of releases result in more
effective weed suppressions after regrowth.

6 Conclusion

A two-dimensional reaction-diffusion model, formu-
lated as a system of coupled PDEs, was presented in
order to describe the population growth and dispersal
of water hyacinth and the interacting populations of the
development stages of the N. eichhorniae weevil as BCA
in a temporally and spatially variable environment. Nu-
merical solutions to the system of PDEs in a bounded
domain with homogeneous Neumann boundary condi-
tions were obtained by means of simulations of the finite
element method implemented in Matlab. Various chal-
lenges in implementing time delays, spatial averaging,
frequent releases and fluctuating temperatures were dis-
cussed.

Conceptual validation tests indicate that the spatially
explicit model may succeed in describing the spatio-
temporal dynamics of the water hyacinth and weevil sys-
tem. Numerical results confirm the hypothesis that the
seasonal timing of BCA releases have a significant influ-
ence on the success of the control achieved, as well as the
magnitude and frequency of the releases. In order to as-
certain the robustness of the model output, the next step
will be to perform a sensitivity analysis in addition to a
predictive validation test of the model output with data
from real life release scenarios. Given a realistic repres-

mailto://helenevschalkwyk@gmail.com
http://mcfns.com


Van Schalkwyk et al. (2017)/Math.Comput. For.Nat.-Res. Sci. Vol. 9, Issue 1, pp. 30–42/http://mcfns.com 41

0 100 200 300
0

3500

7000

t (days)

P
la

n
t

d
en

si
ty

(k
g
/
1
0
0

m
2
)

(a) Plant densities with f = 0.
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(b) Adult densities with f = 0.
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(c) Plant densities with f = 28.
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(d) Adult densities with f = 28.
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(e) Plant densities with f = 7.
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(f) Adult densities with f = 7.

Figure 9: Plant and adult population densities for once-off (f = 0), low frequency (f = 28) and high frequency
(f = 7) releases over a time period of one year.

entation of the population growth and dispersal of the
interacting species, the model may be used to provide
guidance towards the optimal magnitude, frequency, sea-
sonal timing and distribution of BCAs releases.
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