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USING SATSCANTM SPATIAL-SCAN SOFTWARE WITH
NATIONAL FOREST INVENTORY DATA: A CASE STUDY IN

SOUTH CAROLINA

KaDonna Randolph
USDA Forest Service, Southern Research Station, Knoxville, TN 37919 USA

Abstract. The USDA Forest Service Forest Inventory and Analysis (FIA) program makes and keeps
current an inventory of all forest land in the United States. To comply with privacy laws while at the same
time offering its data to the public, FIA makes approximate plot locations available through a process
known as perturbing (“fuzzing”) and swapping. The free spatial scanning software program SaTScanTM

together with FIA data was used to examine the effects of this process and other arrangements of FIA
data on the detection of hotspots of standing dead trees in South Carolina. Only 77.8%, 85.7%, and 66.7%
of the hotspots identified in datasets with unaltered plot coordinates were observed when the coordinates
were fuzzed, swapped, or both fuzzed and swapped, respectively. Aggregating plot-level data to census
tract and county dampened the effect of fuzzing and swapping but resulted in the identification of fewer
hotspots overall. Within the framework of forest health monitoring in which failing to identify a problem
that truly exists can have serious repercussions, neither relying solely on fuzzed and swapped data nor
aggregated data will suffice. The addition of buffer data to evaluate the stability of hotspots located near
the study area boundary is recommended.
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1 introduction

Spatial scan statistics are commonly used in epidemi-
ology, criminology, and other fields to identify areas with
an outbreak of disease, crime, or other unusual event
commonly known as a “hotspot.” Hotspot detection re-
lies on spatially-referenced point data and an algorithm
that scans a geographical area and tests via a likelihood
ratio whether the points inside the scanning window (usu-
ally a circle or ellipse) have a higher (or lower) rate of
event occurrences than the points outside the scanning
window. In addition to the underlying distribution of
the phenomenon being investigated, the ability of spatial
scan statistics to detect hotspots is dependent upon the
location accuracy of the spatially-referenced point data
and other input required by the scanning algorithm.

Spatial scan statistics have found recent, albeit some-
what limited, application to forestry, e.g., having been
used to identify hotspots of forest fires (Orozco et al. 2012),
oak regeneration (Fei 2010), forest fragmentation (Coul-
ston and Riitters 2003, Riitters and Coulston 2005),
insect and pathogen disturbances (Coulston and Riit-

ters 2003), and poor tree crown conditions (Bechtold
and Coulston 2005). Unique among these applications
were the studies by Bechtold and Coulston (2005) and
Coulston and Riitters (2003) which employed the spatial
scan statistic within the tiered forest health monitoring
framework of the U.S. Forest Service (Riitters and Tkacz
2004). This framework consists of a detection tier, which
is the routine and repeated, systematic sampling of the
forest, and an evaluation tier which provides for intensive
follow-up studies of irregularities observed in the detec-
tion tier. Together these activities seek to identify the
extent and cause of deteriorating forest conditions that
are occurring either subtly over a long period of time
due to cumulative stresses or more rapidly due to specific
stresses (Riitters and Tkacz 2004).

Ground surveys conducted by the Forest Inventory
and Analysis (FIA) program of the Forest Service, U.S.
Department of Agriculture, are a major source of data
for forest health monitoring efforts in the United States.
FIA has been conducting a forest inventory in the United
States for over 80 years (USDA Forest Service 1992).
Established initially by the McSweeney-McNary Forest
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Research Act of 1928 (P.L. 70-466 ), the 1998 Agricul-
tural Research, Extension, and Education Reform Act
(P.L. 105-185 ) mandated FIA to annually report on
the area of forestland; volume, growth, and removal of
forest resources; and the health and condition of the
resource across all lands, public and private (McRoberts
et al. 2005, USDA Forest Service 1992). In addition
to these annual reports, which are made available in
both print and electronic formats, FIA also makes its
raw inventory data available to the public. Standard
inventory data such as tree height and diameter, forest
type, stand age, etc., as well as information needed to
make population estimates, are provided via the online
FIA database accessible at http://apps.fs.fed.us/fiadb-
downloads/datamart.html [Date accessed: February 26,
2016] (O’Connell et al. 2014).

Despite the plethora of data available through the
online database, FIA is restricted from releasing exact
plot locations by the 2000 Interior and Related Agencies
Appropriations Act (H.R. 3423). To comply with this
policy while at the same time offering its data to the
public, FIA makes approximate plot locations available
through a process known as perturbing and swapping
(McRoberts et al. 2005). This process, also called “fuzzing
and swapping,” perturbs the geographic coordinates of
each plot location to within 1.6 km of its exact location
and for a small proportion of the privately owned plots,
exchanges the coordinates with other ecologically similar
plots in close proximity (McRoberts et al. 2005). Except
in unusual circumstances, coordinates are fuzzed and
swapped within the same county or parish.

Several studies have examined the effect of fuzzing and
swapping on the outcomes of different research questions
and have shown that the process has varying effects. For
example, studies that use FIA plot data in conjunction
with satellite imagery or other spatially explicit data,
e.g., digital terrain data, are affected most (Coulston et
al. 2006, Prisley et al. 2009, Randolph 2015, Wang et
al. 2011), whereas the effect is typically negligible for
studies making estimates or building models for large
areas (Gibson et al. 2014, Guldin et al. 2006, McRoberts
et al. 2005, Prisley et al. 2009). Although many questions
regarding the effect of fuzzing and swapping have been
answered, questions continue to arise as new technologies
are developed and used in conjunction with FIA data.
Such is the case with spatial scan statistics. Thus, the
objective of this study was to examine the effect of using
various arrangements of FIA data to detect hotspots
of standing dead trees in South Carolina with the free
spatial scanning software program SaTScan1 (Kulldorff
and Information Management Services, Inc. 2015). The

1SaTScanTM is a trademark of Martin Kulldorff. The
SaTScanTM software was developed under the joint auspices of
(i) Martin Kulldorff, (ii) the National Cancer Institute, and (iii)

first evaluation examines the effect of fuzzing, swapping,
and fuzzing and swapping combined on the size, number,
and location of hotspots of standing dead trees in South
Carolina (Section 4). The second evaluation examines the
effect of aggregating plot data to larger administrative
units (census tract and county) as a way to minimize the
effect of fuzzing and swapping (Section 5). Because edge
effect, or boundary bias, is a concern for spatial analyses
like hotspot detection (Gregorio et al. 2006, Van Meter
et al. 2010), the third evaluation examines the stability
of hotspots detected near the boundary of the study area
(Section 6).

2 Spatial Scan

Hotspot detection was implemented with SaTScanTM

version 9.4.2 (Kulldorff 2015, Kulldorff and Information
Management Services, Inc. 2015). SaTScan works by
imposing a scanning window of increasing size at each
geographic point of data and testing via a likelihood ratio
whether the points inside the scanning window have a
higher (or lower) rate of event occurrences, i.e., cases,
than the points outside the scanning window (Kulldorff
1997). The maximum size of the scanning window can
be a percentage of the population at risk or a defined
geographic distance. (The default setting is 50% of the
population at risk.) For each scanning window, a likeli-
hood ratio test statistic (LRTS) is calculated according
to a specified probability model and the window corre-
sponding to the maximum value of the calculated LRTS
is identified as the most likely hotspot. Other hotspots
follow in rank order according to the LRTS. Statistical
significance of the hotspots is determined by Monte Carlo
simulation that repeats the analysis for a user-specified
number of random replications of the original data set
under the null hypothesis of spatial randomness. (The
default number of replications is 999.) The LRTSs for
the hotspots are compared to the distribution of test
statistics from the Monte Carlo simulation and if they
exceed 95% of the values from the simulation they are
considered significant at the 5% level.

For all analyses in this study, the null hypothesis was
that the prevalence of standing dead trees in the scanning
window was the same as the prevalence of standing dead
trees outside the window, i.e., spatial randomness. The
alternative hypothesis was that the prevalence of stand-
ing dead trees in the window was greater than expected
under the null hypothesis. All runs of SaTScan were
implemented as purely spatial scans under the Bernoulli
probability model with a circular scanning window. The
maximum size of the scanning window was defined as
a percentage of the total population at risk, i.e., the
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combined total of standing dead and live trees (“cases”
and “non-cases”, respectively) in the study area, and the
number of replications for the Monte Carlo simulations
was set to the default value. Only hotspots that were sig-
nificant (α = 0.05) and not geographically overlapped
by hotspots with higher LRTS values are discussed in
the results. In all analyses, emphasis was placed on the
difference between hotspots identified in two contrasting
datasets rather than on the veracity of hotspots identified
in any particular dataset.

3 FIA Data

FIA plots are located across the United States in
such a way that the sampling intensity is 1 plot per
approximately 2,400 ha. The sampling frame used to
locate each plot on the ground is based on a hexagonal
tessellation of the United States with 1 plot randomly
located within each hexagon (Reams et al. 2005). Each
plot consists of four 7.32 m fixed-radius subplots on which
trees ≥12.7 cm in diameter at breast height (d.b.h.) are
measured. The cluster of subplots is arranged with 1
central subplot and 3 other subplots located 36.6 m
from the central subplot at azimuths of 0, 120, and
240 degrees. Each plot is permanently monumented,
georeferenced, and measured on a repeating cycle of
between 5 and 10 years. All plots within a state are
divided into spatially balanced “panels.” A single panel
of plots is measured every year so that each state is
completely measured once every 5 to 10 years on an
ongoing basis. Although measurements are spread over
multiple years, the inventories are dated with the year
of the most recently collected panel of data. For this
analysis, FIA data for inventory year 2012 were obtained
from the FIA database for Georgia, North Carolina, and
South Carolina (Fig. 1). Only fully forested plots with
live or standing dead trees ≥12.7 cm d.b.h. were kept
for the analyses (Table 1). According to FIA definitions,
the bole of a dead tree must be at least 1.37 m in length

Table 1: Number of live and standing dead trees observed
on fully forested plots in select buffer zones surrounding
South Carolina (SC).

Geographic area Plots Trees
Live Dead Total

SC only 1,742 46,473 1,899 48,372
SC+6 km buffer 1,866 49,869 2,085 51,954
SC+12 km buffer 1,967 52,670 2,217 54,887
SC+18 km buffer 2,079 55,644 2,386 58,030
SC+neighboring
states∗

7,510 196,065 9,228 205,293

∗Georgia and North Carolina.

and lean less than 45 degrees from vertical in order for
it to qualify as “standing dead” (USDA Forest Service
2012). Data from Georgia and North Carolina were only
included in the evaluation of edge effect (Section 6).

NC

SC

GA

Figure 1: Location of forest and woody wetlands land
cover (Homer et al. 2015) in the states of Georgia (GA),
North Carolina (NC), and South Carolina (SC) in the
southeastern United States.

4 Fuzzing and Swapping

Three datasets were compiled in order to evaluate
the effect of FIA’s fuzzing and swapping procedure on
the detection of hotspots of standing dead trees in South
Carolina. First was a dataset in which all of the plot
locations were the confidential geographic coordinates
with no fuzzing and no swapping (hereafter referred to
as “actual”). Second was a dataset in which the geo-
graphic coordinates were fuzzed but none were swapped
(“fuzzed/nonswapped”). Third was a dataset like that
available to the public in which all of the geographic co-
ordinates were fuzzed and some were swapped (“fuzzed/
swapped”). Among the plots used in this analysis, 18.5%
had swapped geographic coordinates. For the scans in
this analysis, the maximum size of the scanning window
was set to 50% of the population at risk in South Carolina
(Table 1).

4.1 Analysis Three separate scans were made, one
for each dataset (actual, fuzzed/nonswapped, and fuzzed/
swapped). Hotspots were depicted as circles with radii
equaling the distance from the plot at the center of the
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hotspot to the most distant plot included in the hotspot.
Results were compared in a pairwise fashion:

� Actual vs. fuzzed/nonswapped, to observe the
effect of fuzzing.

� Fuzzed/nonswapped vs. fuzzed/swapped, to ob-
serve the effect of swapping.

� Actual vs. fuzzed/swapped, to observe the effect
of fuzzing and swapping combined.

For each pairwise comparison, geographically overlapping
hotspot pairs were compared with an intersection-to-
union area ratio (Ra) calculated as

Ra =
|X

⋂
Y |

|X
⋃
Y |
× 100

where X and Y represent the km2 area of two geographi-
cally overlapping hotspots. Maximum Ra, i.e., Ra =
1, occurs when overlapping clusters have identical center
points and equal radii. Ra decreases from the maximum
value and asymptotically approaches 0 as overlapping
clusters diverge from one another in terms of size (ra-
dius) and/or center point location. Area calculations
were made in ArcMapTM 10.3.1 (©ESRI 2015) under
the Albers Equal Area Conic projection for North Amer-
ica. For some hotspots, the circular area extended beyond
the border of South Carolina. In such cases, only the
area within South Carolina was included in the Ra calcu-
lation. Ra was not calculated when one of the hotspots
in an overlapping pair consisted of a single plot. The
sensitivity of the scan to detect “true” hotspots was
calculated as the percentage of hotspots detected in the
base dataset also detected in the contrasting dataset. For
the examination of the effect of fuzzing and the effect of
fuzzing and swapping combined, the base dataset was
the actual dataset. For the examination of the effect of
swapping, the base dataset was the fuzzed/nonswapped
dataset.

4.2 Results A total of 9 different regions, labeled A
through I in Fig. 2, were identified as having hotspots of
standing dead trees, but only regions A, C, D, E, G, and H
were identified in all three datasets. Hotspots were identi-
fied in region B with the actual and fuzzed/nonswapped
datasets, but not the fuzzed/swapped dataset. Hotspots
were identified in regions F and I with the actual dataset
only. Hotspots in regions C, D, E, and G were single-plot
hotspots in each of the three datasets. The hotspots
located in region A were the most likely hotspots in each
dataset.

4.2.1 Effect of Fuzzing The scan based on the fuzzed
/nonswapped dataset identified 2 fewer hotspots than the

A
B

C
E

D

G H

I

F

Actual
Fuzzed/nonswapped

Multiplot
Single plot

Fuzzed/swapped

Figure 2: Hotspots of standing dead trees in South
Carolina based on actual, fuzzed/nonswapped, and
fuzzed/swapped plot coordinates. Single-plot locations
are approximate. The letter A identifies the region with
the most likely hotspot. The distance between single-
plot locations within hotspot regions C, D, E, and G are
exaggerated for visualization purposes.

scan based on the actual dataset (sensitivity = 77.8%),
but had no effect on the total number of single-plot
hotspots (Fig. 2). Located in region A (Fig. 2), the most
likely hotspot in the fuzzed/nonswapped dataset (LRTS
= 51.8) included 386 cases across 218 plots (Table 2)
and compared favorably to the most likely hotspot in
the actual dataset (Ra = 0.98) (Table 3). Hotspots in
regions C, D, E, and G (Fig. 2) were identical in terms
of LRTS rank and plot composition, but their locations
varied slightly due to the fuzzing procedure. Hotspots
in regions B and H (Fig. 2) were also identical in terms
of LRTS rank and plot composition, but were different
in terms of location and area (Ra = 0.96 and 0.91,
respectively) (Table 3).

4.2.2 Effect of Swapping The scan based on the
fuzzed/swapped dataset identified 1 less hotspot than the
scan based on the fuzzed/nonswapped dataset (sensitivity
= 85.7%), but had no effect on the total number of single-
plot hotspots (Fig. 2). Located in region A (Fig. 2), the
most likely hotspot in the fuzzed/swapped dataset (LRTS
= 51.8) included 611 cases across 382 plots (Table 2) and
compared moderately to the most likely hotspot in the
fuzzed/nonswapped dataset (Ra = 0.66) (Table 3).
Hotspots in regions C, D, E, and G (Fig. 2) were identi-
cally located. Though located in the same general region
H, the hotspot identified in the fuzzed/swapped dataset
varied considerably in terms of geographic area from the
one identified in the fuzzed/nonswapped dataset (Ra =
0.18) (Table 3).
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Table 2: Descriptive statistics for selected hotspots of standing dead trees in South Carolina based on plot data
with actual geographic coordinates, fuzzed/nonswapped geographic coordinates, and fuzzed/swapped geographic
coordinates. A case is defined as a standing dead tree.

Coordinates Hotspot∗ Number of plots LRTS† Number of cases Radius (km)

Actual A 224 53.1 396 95
Actual B 6 10.8 14 14
Actual H 2 11.2 16 4
Fuzzed/nonswapped A 218 51.8 386 94
Fuzzed/nonswapped H 2 11.2 16 4
Fuzzed/swapped A 382 51.8 611 115
Fuzzed/swapped H 5 13.3 16 9
∗Illustrated in Fig. 2.
†Likelihood ratio test statistic.

Table 3: Intersection-to-union ratio (Ra) of the geograph-
ically overlapping multiplot hotspots illustrated in Fig. 2.

Hotspot Ra

Effect of fuzzing∗

A 0.98
B 0.96
H 0.91

Effect of swapping†

A 0.66
H 0.18

Effect of fuzzing and swapping‡

A 0.67
H 0.20
∗Actual vs. fuzzed/nonswapped.
†Fuzzed/nonswapped vs. fuzzed/swapped.
‡Actual vs. fuzzed/swapped.

4.2.3 Effect of Fuzzing and Swapping Combined
The scan based on the fuzzed/swapped dataset identi-

fied 3 fewer hotspots than the scan based on the actual
dataset (sensitivity = 66.7%), but had no effect on the
total number of single-plot hotspots (Fig. 2). Located in
region A (Fig. 2), the most likely hotspot in the actual
dataset (LRTS = 53.1) included 396 cases across 224
plots (Table 2) and compared moderately to the most
likely hotspot in the fuzzed/swapped dataset (Ra =
0.67) (Table 3). The single-plot hotspots in regions C,
D, E, and G (Fig. 2) were identical in terms of plot com-
position, but their locations varied slightly due to the
fuzzing procedure. Though located in the same general
region H, the hotspot identified in the actual dataset
varied considerably in terms of geographic area from the
one identified in the fuzzed/swapped dataset (Ra =
0.20) (Table 3).

4.3 Discussion The FIA process of fuzzing and swap-
ping plot geographic coordinates provided to the public
is necessary for protecting landowner privacy. From the
outset, it was determined that the act of fuzzing alone
was not sufficient to meet the confidentiality requirements
required by law (Guldin et al. 2006). Thus, the second
step of exchanging the coordinates of ecologically similar
plots was added. The decision to add swapping in order
to improve confidentiality was evident in this study, for
fuzzing alone only minimally effected the spatial scan
outcome. That is, the geographic location of individual
hotspots identified in the actual dataset was much more
similar to hotspots identified in the fuzzed/nonswapped
dataset than to hotspots identified in the fuzzed/swapped
dataset (Ra >0.90 vs. Ra <0.68).

As observed in other studies (Coulston et al. 2006,
Prisley et al. 2009, Wang et al. 2011), using the publicly
available FIA data, i.e., fuzzed/swapped data, carries
with it risks that may be unacceptable for certain inves-
tigations. Typically within the forest health monitoring
framework, a high rate of false positives is accepted as
the cost of not overlooking a serious problem (Riitters
and Tkacz 2004). Accepting such is particularly war-
ranted when resources are available to investigate and
either confirm or nullify a suspected hotspot (e.g., Bech-
told and Coulston 2005, Randolph et al. 2009). No false
positives were identified in the fuzzed/swapped dataset;
however, there were 3 false negatives. Though this was
a moderate rate of success, failing to identify a forest
health problem when one actually exists can have serious
repercussions. Thus, if the goal is to identify all possible
hotspots for further investigation, using fuzzed/swapped
data with SaTScan would not suffice.

5 Data Aggregation

Aggregating FIA data to a coarser spatial scale prior
to implementing a spatial scan would eliminate many
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Table 4: Descriptive statistics for hotspots of standing dead trees in South Carolina based on census tract and county
aggregations of individual plot data. A case is defined as a standing dead tree.

Aggregation Coordinates Hotspot Number of locations LRTS∗ Number of cases

Census tract Actual A† 85 50.9 439
Census tract Fuzzed and swapped A† 85 49.8 444
Census tract Fuzzed and swapped B† 1 9.4 10
County Actual A‡ 14 46.6 673
∗Likelihood ratio test statistic.
†Illustrated in Fig. 6.
‡Illustrated in Fig. 5.

concerns about plot confidentiality; however, as seen in
the field of human epidemiology, aggregating data to
administrative units such as county, zip code, or census
tract can negatively affect hotspot detection rates (Jeffrey
et al. 2009, Olson et al. 2006, Ozonoff et al. 2007). This
is because data aggregation can incongruently alter the
concentration of events or cases relative to background
population levels. This is particularly the case when a
hotspot crosses the artificial, administrative boundary by
which the aggregations are defined. Though FIA makes
every effort to work with partners wishing to use actual
geographic coordinates in analyses that require them2,
such requests take time to be approved and fulfilled.
Data aggregation might be an alternative to using actual
plot coordinates for spatial scan applications if hotspots
present at the plot-level can be successfully identified
within the aggregated data. Thus, this section explores
how well hotspots identified at the plot-level are iden-
tified at coarser spatial scales and if the same level of
agreement can be achieved by basing the aggregations
on the fuzzed/swapped dataset as on the actual dataset.

5.1 Analysis Plot-level counts of standing dead trees
(cases) and live trees (non-cases) were respectively summed
by census tract and county. The census tract aggregation
was completed twice, once with the actual dataset and
secondly with the fuzzed/swapped dataset (Section 4).
County-level aggregations needed to be done only once
because plots were fuzzed and swapped within counties.
The respective sums were assigned to the geographic co-
ordinates of the census tract centroid or county centroid.
Centroids were determined with the calculate geometry
function in ArcMapTM 10.3.1 (©ESRI 2015). Spatial
scans were implemented with the maximum size of the
scanning window set to 50% of the population at risk in
South Carolina (Table 1). Results from the scans based

2More information about this type of arrangement can
be obtained by contacting FIA Spatial Data Services
(http://www.fia.fs.fed.us/tools-data/spatial/index.php) [Date ac-
cessed: February 1, 2017].

on the aggregated data (actual dataset) were compared
visually to the plot-level scan (actual dataset) (Section 4)
through a geographic information system (GIS) overlay.
Results from the two census-tract aggregations were com-
pared to one another with the intersection-to-union area
ratio (Ra) (Section 4.1). For this calculation of Ra, the
area of each hotspot equaled the total area of all census
tracts included in the hotspot.

5.2 Results

5.2.1 Census tract and county aggregations Only
1 hotspot was identified when the plot-level data (actual
dataset) were aggregated to census tract (Fig. 3). This
hotspot included 439 cases and 85 census tracts (Ta-
ble 4), and excluded tracts roughly corresponding to the
Interstate-85 corridor and cities of Greenville and Spar-
tanburg. Likewise, only 1 hotspot was identified when
the plot-level data were aggregated to county (Fig. 3).
This hotspot included 673 cases and 14 counties (Table 4).
Both the census tract hotspot and the county hotspot
coincided geographically with the most likely hotspot
identified in the plot-level data (Fig. 3). The coarser
the aggregation, the greater the effect on the detection
of hotspots (Ozonoff et al. 2007). Thus, as expected,
the extent of the census tract hotspot more closely re-
sembled the extent of the plot-level hotspot than did
the county-level hotspot. Eight of the 9 hotspot regions
identified in the plot-level data were not identified in
either aggregated dataset (sensitivity = 11.1%).

5.2.2 Effect of fuzzing and swapping Two signifi-
cant hotspots were identified when the census tract aggre-
gation was based on the fuzzed/swapped dataset (Fig. 4).
The most likely hotspot, labeled A in Fig. 4, included 444
cases and 85 census tracts (Table 4). The second hotspot,
labeled B in Fig. 4, included 10 cases and only 1 census
tract (Table 4). The geographical similarity between
the most likely hotspot detected in the fuzzed/swapped
aggregation and the only hotspot identified in the actual
aggregation was high (Ra = 0.98) (Fig. 4). If the ag-
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I.

II.

III.

A

A

Census tract

County

Plot-level hotspot
County-level hotspot
Tract-level hotspot

Figure 3: Hotspots of standing dead trees in South Car-
olina based on individual plot data (actual coordinates)
and plot data (actual coordinates) aggregated to census
tract (I) and county (II). Inset (III) highlights the extent
of geographical overlap of the plot-, census tract-, and
county-level hotspots. Single-plot locations (shown as
squares) are approximate. The letter A identifies the
region with the most likely hotspot.

Actual
Fuzzed/swapped
Census tract

B

A

Figure 4: Hotspots of standing dead trees in South Car-
olina based on plot data aggregated to census tract using
actual geographic coordinates and fuzzed/swapped geo-
graphic coordinates. The letter A identifies the region
with the most likely hotspot.

gregation to census tract based on the actual dataset is
considered to represent true hotspots, then the aggrega-
tion based on the fuzzed/swapped dataset resulted in 1
false positive.

5.3 Discussion A high number of false negatives
was observed when the scans based on the aggregated
data were compared to the scans based on the plot-
level data. This occurred at both scales of aggregation,
county and census tract, and for both sets of geographic
coordinates, actual and fuzzed/swapped. Though one
hotspot was consistently identified across all scans, the
rate of success was too low to recommend relying solely
on aggregated data for forest health monitoring purposes.
Nonetheless, aggregating data from precise locations may
sometimes be profitable despite the occurrence of false
negatives. Jeffrey et al. (2009) showed that the power to
detect hotspots was highest with precise locations and
disturbances that were confined to small regions of the
study areas or those that affected a large portion of the
population, but they also observed that aggregation could
improve the ability to detect weak signals if the level of
aggregation was equal to, or smaller than, the spatial
disturbance. Weak signals may represent areas with an
emerging problem and could be important with regard
to forest health monitoring. Because the distribution
of risk is not known a priori, utilizing multiple levels of
aggregations in addition to the precise locations could
be beneficial for identifying forest health problems. In
so doing, a decision must be made about which plot
coordinates to use for aggregations smaller than the
county-level. As seen here, the geographical similarity
between the census tract aggregations was exceptionally
high for the most likely cluster (Ra = 0.96) and a
considerable improvement over what was observed at
the plot-level (Ra = 0.67). Nevertheless, the false
positive hotspot reveals the uncertainty that can arise
when fuzzing/swapping moves plots from one aggregation
unit and into another. Ideally then, aggregations to
units smaller than county should be made with actual
geographic coordinates.

6 Edge Effect

Geopolitical or other boundaries unrelated to the
phenomenon being investigated can pose a problem for
hotspot detection if the population of interest extends
beyond the boundary for which data are available. Such
spatial censoring can introduce bias near the boundaries
and affect overall inferences drawn from analyses (Grego-
rio et al. 2006, Van Meter et al. 2010). Two solutions to
this problem have been posited. The first is a reduction
of the maximum allowable size of the scanning window
(Gregorio et al. 2006, Loha et al. 2012, Perez et al. 2005).
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The second is the inclusion of data from a buffer zone
around the area of interest (Bechtold and Coulston 2005,
Sadler et al. 2011, Van Meter et al. 2010). The former
minimizes the chance that hotspots will reach or extend
beyond the boundary of the study area whereas the latter
maximizes full estimation of hotspots within the study
area.

Choosing a scanning window size that is too large
may produce hotspots that are too large to be useful
or hide small, homogeneous hotspots within larger, het-
erogeneous ones; choosing a size that is too small may
produce results that miss large hotspots (Chen et al. 2008,
Fotheringham and Zhan 1996). Likewise, an exceedingly
large buffer area may alter the overall spatial distribu-
tion of risk and unduly influence detection of hotspots
within the interior of the study area. This is especially
true if the risk in the buffer area is different from the
risk in the area of interest. Two questions that follow
from these different approaches, to what size should the
scanning window be reduced and what size buffer area is
appropriate, are addressed here.

6.1 Analysis An initial, baseline scan was made using
the default SaTScan value for the maximum size of the
scanning window, i.e., 50% of the total population at risk.
Only data from South Carolina (Table 1) were included
in the baseline scan. Plot locations were based on the
confidential, i.e., actual, geographic coordinates (Section
4).

6.1.1 Scanning window size To address the ques-
tion regarding the maximum size of the scanning window,
SaTScan was run with maximum scanning window sizes
equal to 5%, 15%, 25%, and 33% of the population at
risk, i.e., the total number of live and standing dead
trees in South Carolina (Table 1). Hotspots identified
with these four scanning window sizes were compared to
hotspots identified in the baseline scan on the basis of
geographical overlap with the intersection-to-union area
ratio (Ra) (Section 4.1). Area calculations were made in
ArcMapTM 10.3.1 (©ESRI 2015) under the Albers Equal
Area Conic projection for North America. Hotspots were
depicted as circles with radii equaling the distance from
the plot at the center of the hotspot to the most distant
plot included in the hotspot. For some hotspots, the cir-
cular area extended beyond the border of South Carolina.
In such cases, only the area within South Carolina was
included in the Ra calculation. Ra was not calculated
when one of the hotspots in an overlapping pair consisted
of a single plot.

6.1.2 Buffer area size To address the question about
buffer size, the study area was expanded to include data
from 4 buffer areas around South Carolina: (a) within

6-km, (b) within 12-km, (c) within 18-km, and (d) in
all neighboring states, i.e., Georgia and North Carolina.
The 6-, 12-, and 18-km buffer distances were selected to
approximately include the nearest, 2 nearest, and 3 near-
est bands of FIA plots, respectively. For these additional
scans, the maximum size of the scanning window was
set to 50% of the respective population at risk (Table 1).
Hotspots identified with each of the scans were compared
to hotspots identified in the baseline scan on the basis
of geographical overlap with the intersection-to-union
area ratio (Ra) (Section 4.1). Hotspots were depicted
as circles with radii equaling the distance from the plot
at the center of the hotspot to the most distant plot
included in the hotspot. Ra calculations excluded the
area of hotspots extending beyond the South Carolina
state boundary and were made only when both hotspots
in the overlapping pair consisted of multiple plots.

6.2 Results

6.2.1 Effect of scanning window size The hotspots
identified with a maximum scanning window set to 50%
of the population at risk were identical to the hotspots
identified with a maximum scanning window of 33%,
25%, and 15% of the population at risk. Therefore, only
the results for the 5% scanning window are shown in
contrast to the results for the 50% scanning window.

A total of 9 significant hotspots were identified with
the 50% scanning window and 11 with the 5% scanning
window. The only difference between the two scans
occurred in the region of the most likely hotspots where
the 5% scanning window detected 3 hotspots and the
50% scanning window detected only 1 (Fig. 5). The
most likely hotspot (LRTS = 53.1) identified with the
50% scanning window, labeled A in Fig. 5, included 396
cases across 224 plots extending up to 95 km from the
hotspot center. The most likely cluster (LRTS = 42.33)
identified with the 5% scanning window was a single-plot
(labeled B in Fig. 5) consisting of 19 cases. The two other
hotspots identified with the 5% scanning window in this
region, labeled C and D (Fig. 5.), overlapped hotspot A
with Ra values of 0.43 and 0.02, respectively (Table 5).

6.2.2 Effect of buffer zones The number of signif-
icant hotspots in South Carolina decreased as the size
of the buffer area increased, ranging from 9 significant
hotspots with no buffer to 4 significant hotspots when
data from all neighboring states were included (Fig. 6).
The number of single-plot hotspots remained at 4 as
the buffer size increased until data from all neighboring
states were included, at which point only 3 single-plot
hotspots were identified (Fig. 6). For the state-only and
buffer-added scans, the most likely hotspot was located
in the same geographic area, labeled A in Fig. 6. The
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Table 5: Descriptive statistics for selected hotspots of standing dead trees in South Carolina based on a maximum
scanning window size of 50% of the population at risk (hotspot A) and 5% of the population at risk (hotspots B, C,
and D). A case is defined as a standing dead tree.

Hotspot∗ Number of plots LRTS† Number of cases Radius (km) Ra‡

A 224 53.1 396 95 -
B 1 42.3 19 - -
C 85 27.3 153 42 0.43
D 23 18.6 64 30 0.02
∗Illustrated in Fig. 5.
†Likelihood ratio test statistic.
‡Intersection-to-union ratio with hotspot A.

B

50% scan window

5% scan window

Multiplot

Single plot

C

D

A

Figure 5: Hotspots of standing dead trees in South Car-
olina based on two scanning window sizes, 50% of the
population at risk and 5% of the population at risk.
Single-plot locations are approximate.

hotspots located in this region increased in area and
number of cases as the size of the buffer area increased
(Table 6). Similarity between the most likely hotspot in
the South Carolina-only scan and the most likely hotspot
in the buffer-added scans was approximately the same
for buffers of size 6-km, 12-km, and 18-km: Ra = 0.95,
0.94, and 0.94, respectively (Table 6). The similarity
between the South Carolina-only scan and the scan with
data from South Carolina, Georgia, and North Carolina
was lowest of all (Ra = 0.63) (Table 6).

Two hotspots located near the border of South Car-
olina, labeled B and C in Fig. 6, were not significant
once data in the buffer zones were included in the spatial
scan. Hotspot D, located toward the interior of the state,
was not detected with buffers >12-km, and hotspots E
and F in the interior were not detected when data from
Georgia and North Carolina were included (Fig. 6).

IV.III.

II.I.

State

State + buffer

Multiplot

Single plot

A

C

F

E

B

C

B

C

D

B

C

D
B

D

A

A

A

D E E

E

F

F F

Figure 6: Hotspots of standing dead trees in South Car-
olina based on data from South Carolina plus data in
a buffer area of size 6 km (I), 12 km (II), 18 km (III),
and all neighboring states (IV). Single-plot locations are
approximate.

6.3 Discussion To minimize the influence of scanning
window size on the interpretation of SaTScan results,
Chen et al. (2008) recommended repeating the scan with
multiple window sizes and calculating a reliability score
for each location included in the analysis. Calculated as
the ratio of the number of scans for which location i is
within a significant hotspot to the total number of scans,
this score measures the stability of hotspots reported by
multiple scans and helps identify a hotspot’s core. In
this study, all of the hotspots except hotspot A (Fig. 6)
remained unchanged as the maximum size of the scanning
window was reduced from 50% of the population at risk to
5% of the population at risk. Therefore, reliability scores
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Table 6: Descriptive statistics for hotspots in region A (Fig. 6) of South Carolina (SC) based on plot data from select
buffer zones. A case is defined as a standing dead tree.

Geographic area Number of plots∗ LRTS† Number of cases∗ Radius (km) Ra‡

SC only 224 53.1 396 95 -
SC + 6 km buffer 238 69.2 420 105 0.95
SC + 12 km buffer 240 88.5 422 108 0.94
SC + 18 km buffer 240 102.8 422 108 0.94
SC + neighboring states§ 417 604.3 643 216 0.63
∗Plots and cases outside of SC are excluded.
†Likelihood ratio test statistic.
‡Intersection-to-union ratio with hotspot A identified with the SC-only dataset.
§Georgia and North Carolina.

were deemed unnecessary. Nevertheless, the approach
highlighted 3 areas within hotspot A (B, C, and D in
Fig. 5) that might be considered core areas and as such
could be prioritized for follow-up study. Likewise, the
addition of buffer data identified 2 hotspots that are
likely artifacts of spatial censoring (B and C in Fig. 6)
and could be given low priority in a follow-up study.

A buffer area of 6- to 12-km was sufficient to see
changes in the hotspots near the study area boundary.
However, whether or not 6- to 12-km should be consid-
ered a standard buffer width when using SaTScan to
monitor state-level forest health with FIA data was not
tested specifically. In general, the size of the buffer area
should be chosen carefully, with consideration given to
the nature of the resource and disturbance phenomenon
under investigation. With FIA’s national sampling frame-
work, buffer data are available for all areas except those
along the international borders.

Altering the maximum size of the scanning window
and adding buffer data are not equivalent forms of evalu-
ating edge effects, yet both provide valuable insight into
the location and stability of hotspots centered near the
boundary of a study area. Subsequently, both tactics
may be of use in exploratory analyses such as might be
employed within the forest health monitoring framework.
It should be noted, however, that selecting hotspots for
reporting should not be based on multiple scans uti-
lizing different maximum scanning window sizes unless
p-values are adjusted to account for multiple testing (Han
et al. 2016).

7 Summary

Detecting hotspots of forest fires, insect and dis-
ease outbreaks, or other unusual occurrences within the
forested landscape is an essential aspect of monitoring
forest health in the same way that detecting outbreaks of
human disease is an essential part of monitoring public
health. Spatial scan statistics have emerged as a promis-

ing exploratory tool for identifying such hotspots at a
variety of spatial scales. The utility of these statistics
depends upon the location accuracy of the georeferenced
forest inventory data and other input required by the
scanning algorithms. In this study, SaTScan was used
to identify hotspots of standing dead trees in South Car-
olina based on national forest inventory data collected
by the FIA Program. The effect of three factors on iden-
tified hotspots were investigated: the FIA fuzzing and
swapping procedure, data aggregation, and edge data.

Overall, this study demonstrated what Gregorio et
al. (2006) called the “conditional nature of spatial analy-
ses” whereby the size, number, and location of identified
hotspots are influenced by the study area size, scanning
parameters, and geographical precision of the input data,
in addition to the underlying geographic distribution of
risk. In all cases, the most likely hotspot of standing dead
trees in South Carolina was located in the same general
area. Yet it was evident that the FIA process of fuzzing
and swapping plot coordinates affected the location, size,
and composition of hotspots identified at both the plot
and census tract levels. Though aggregating data to cen-
sus tract dampened the effect of the fuzzing and swapping
procedure, numerous hotspots went undetected when the
data were aggregated on the basis of both the actual and
fuzzed/swapped geographic coordinates. Hotspots that
are detectable at the plot-level but not at the census
tract level may be areas of considerable concern if they
represent areas where problems are beginning to develop.
As such, relying solely on spatial scans based on census
tract aggregations is not a suitable practice for forest
health monitoring.

This study considered only one application of SaTScan
to FIA data: that of looking for hotspots of standing
dead trees in a single state with a circular scanning win-
dow under the case/non-case Bernoulli model. Results
may not be representative of all hotspot detection in-
vestigations utilizing FIA data and SaTScan or other
spatial scan methods. Additional studies in other ar-
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eas of the United States or with other variables under
different statistical models might produce different con-
clusions, particularly regarding the effects of fuzzing and
swapping. This is because swapping is only done for
privately owned forested plots and between such plots
with similar forest characteristics in the same county or
parish (Gibson et al. 2014). Thus, the effect of using
data with fuzzed/swapped geographic coordinates that
was observed in this study may be different in areas
with large public land holdings or with variables that
are closely tied to the characteristics on which swapping
decisions are based, e.g., forest type. In addition, the
underlying size of the affected area, i.e., the size of the
“true” hotspot, should also be considered. Geographically
large hotspots will be less influenced by the swapping
procedure than smaller hotspots because the swapping
is more likely to occur from within the larger areas than
from without (Lister et al. 2005). These factors were
not tested directly in this study but could be addressed
in a power study using simulated or semisynthetic data
in which the distribution of risk is precisely known and
controlled (Olson et al. 2006, Ozonoff et al. 2007).
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