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Abstract. Stand-level growth and yield models are computationally simple and have moderate demands
on input information, but their applications have largely been limited to single-species and even-aged
stands. State-space and simultaneous approaches that are not explicitly functions of time potentially
extend the applicability of stand-level growth and yield models to mixed-species and/or multi-cohort
stands where age (and the period of stand growth that often is derived as the difference in ages) may not
be an available and/or suitable predictor. The Acadian Forest, dominated by naturally-regenerated and
mixed-species stands of primarily multi-cohort structure, offers an ideal framework for a comprehensive
assessment of alternative approaches such as time-explicit, state-space, and simultaneous approaches’
performance in stand-level growth and yield predictions across a wide range of complex forest stands.
We conducted a comparative assessment utilizing an extensive database from this region. It was found
that the three approaches were highly consistent in providing relatively accurate and largely unbiased
stand-level growth and yield predictions. The time-explicit approach had a simplistic form but similar
prediction performances comparable to the other two more complex modeling approaches. In comparison,
the simultaneous approach, despite being path-invariant, was computationally challenging and offered
limited improvements from the other approaches. Our findings showed potential applicability of stand-level
growth and yield models beyond single-species and even-aged forests.

Keywords: Uneven-aged stands; mixed stands; growth and yield models; forest management;
base-age-invariance; path-invariance.

1 Introduction

Stand-level growth and yield models are characterized
by their computational simplicity, moderate demands
on input information, robustness, and ease of applica-
tion (Weiskittel et al., 2011a), particularly for mortal-
ity predictions (e.g., Garcia , 2009). This characteristic
depends on the premise that trees in a stand are simi-
lar and their distribution is generally uniform. Conse-

quently, individual trees in a stand are assumed to vary
little in growth and yield. At the same time, their collec-
tive dynamics can be realistically predicted as a whole
by stand-level models without accounting for individual-
tree differences and potential interactions. This simplic-
ity makes stand-level growth and yield models a conve-
nient tool for forest management, but may limit their
application primarily to single-species and even-aged
stands subject to standardized silvicultural treatments
(e.g., Garcia, 1994; Navar et al. , 2016).
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Time has regularly been a primary predictor of stand-
level growth and yield and has often been utilized in
the form of age or a period of time as the difference in
ages (e.g., Clutter, 1963; Fang et al., 2001; Pienaar and
Shiver, 1986). However, information on age is not al-
ways readily available, and can be difficult to determine
in complex natural stands. In addition, understory and
overstory trees as well as trees of different species, obvi-
ously have diverging paths of growth over time in mixed-
species and/or multi-cohort stands. In addition, natural
disturbances and selection cutting also cause changes in
growing space and, consequently, the growth of trees
(Chen et al., 2017a; Pamerleau et al. , 2015). There-
fore, age and difference in ages may not always be opti-
mal predictors of stand-level growth (Peng, 2000), and
the validity of predicting stand-level growth explicitly
as a function of time (i.e., by a time-explicit approach)
needs to be further evaluated in mixed-species and/or
multi-cohort stands.

Garcia (1994) described a state-space approach for
stand-level growth and yield predictions. The current
state of a stand is represented by a few state variables
(e.g., basal area and dominant height), whose current
values are predicted from their previous values by dif-
ferential/difference equations (i.e., transition functions).
Yield is subsequently predicted as a function of the cur-
rent state by an output function. The most notable fea-
ture of a state-space approach is that it characterizes the
state of the system in a particular moment of time and
uses this information to project the future values of the
principle stand variables (Garcia, 1994). Consequently,
stands in the same state will have the same growth in the
following period of time, regardless of the various tempo-
ral paths (ages) to the state. There are several examples
of the state-space approach for single-species, even-aged
stands (e.g., Cieszewski and Bella , 1993; Nord-Larsen
and Johannsen, 2007; Tait et al., 1988; Tewari et al.,
2014; Waldy et al., 2021). A state-space approach po-
tentially extends the applicability of stand-level growth
and yield models to mixed-species and/or multi-cohort
stands where age and hence the growth period between
ages may not be an available and/or suitable predictor,
which has been previously showcased by Garcia (2011).
A more comprehensive assessment of the state-space ap-
proach may be warranted as Garcia (2011) primarily fo-
cused on even-aged, mixed spruce (Picea spp.) stands
in sub-boreal British Columbia.

An important limitation of the state-space approach
comes from its two-piece design of a set of transition
functions and an output function. Parameters optimized
for the transition functions do not necessarily ensure the
most accurate yield predictions from the output func-
tion. A potential advance from the state-space approach
is a simultaneous approach. Sullivan and Clutter (1972)

proposed a simultaneous approach before the idea of a
state-space approach was formalized. Basal area was
a function of age and also a predictor for stand-level
volume yield in this simultaneous approach. The func-
tion used to predict basal area was inserted into the
volume yield function to estimate parameters in both
functions simultaneously. Based on the idea of Sulli-
van and Clutter (1972), transition functions in a state-
space approach can also be inserted into the output func-
tion (i.e., yield function) to obtain simultaneous estima-
tions of all parameters that optimize yield and hence
growth predictions. An advantage of this simultane-
ous approach is achieving path-invariance (and possi-
bly base-age-invariance), which is sometimes considered
a preferred model property that may improve analytic
compatibility between growth and yield predictions and
reduce errors in these predictions (Burkhart and Tomé,
2012; Rose et al., 2003). Beyond Sullivan and Clutter
(1972), the simultaneous approach has seen limited ap-
plications for growth and yield predictions (e.g., Borders,
1989; Borders and Bailey, 1986).

The state-space approach has seen increased appli-
cations in recent years (e.g., Diéguez-Aranda et al.,
2006; Nord-Larsen and Johannsen, 2007; Stankova, 2015;
Tewari and Singh, 2018). Comparative assessments
of the three approaches are needed to test whether
the theoretical advancement, such as path-invariance
(e.g., Cieszewski , 2021; Cieszewski and Bailey , 2000;
Cieszewski and Strub , 2018), translates into improved
stand-level growth and yield predictions. However, this
type of assessment is scarce in the literature. Waldy et
al. (2021) recently compared the time-explicit and state-
space approaches in hybrid Eucalyptus plantations. This
comparison found that the time-explicit approach per-
formed generally better than the state-space approach
for single-species plantations, where age can be a pri-
mary driving factor. However, the analysis did not eval-
uate the potential advantage of the simultaneous ap-
proach, which is path-invariant contrary to the other two
approaches. In addition, the applicability of these mod-
eling approaches to mixed-species and/or multi-cohort
stands remains unevaluated mainly, except for Garcia
(2017).

The Acadian Forest, dominated by naturally-
regenerated and mixed-species stands of primarily multi-
cohort structure, offers an ideal environment for compre-
hensively assessing the three approaches’ performance in
stand-level growth and yield predictions across a wide
range of complex forest stands. This comparison poten-
tially provides early evidence on whether the applicabil-
ity of stand-level models can be extended appropriately
beyond single-species and even-aged stands by using the
state-space and simultaneous approaches. In addition,
stand-level equations, except for the recent mortality
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models developed by Chen et al. (2023), remain rela-
tively rare in this region and may offer key advantages
in specific applications like constraining tree-level anal-
yses or large-scale optimization efforts (Weiskittel et al.,
2011a).

Specific objectives of this study were to: 1) develop
comparable stand-level volume growth and yield mod-
els based on time-explicit, state-space, and simultane-
ous approaches, 2) apply these models across a wide
range of mixed-species and/or multi-cohort stands in the
Acadian Region, and 3) assess the performance of these
models in stand-level volume growth and yield predic-
tions. Expected findings were the general robustness
of these various approaches with potential advantages
of the state-space and simultaneous approaches being
present as stand complexity increases.

2 Methods

2.1 Study area

The Acadian Forest region resides in the transition zone
between the softwood-dominant boreal forests to the
north and the hardwood forests to the south (Rowe,
1972). This region encompasses three Canadian Mar-
itime Provinces (New Brunswick, Nova Scotia, and
Prince Edward Island) along with southern portions of
Québec and much of the US state of Maine. Across
the region, climate estimates indicate that average an-
nual precipitation is 1,130 mm with a range of 870 to
1,750 mm, while mean growing degree days (sum of tem-
peratures >5°C) is 1,625 days with a range of 726 to
2,292 days (Rehfeldt, 2006). Glacial till is the principal
soil parent material, with soil types ranging from well-
drained loams and sandy loams on glacial till ridges to
poorly and very poorly drained loams on flat areas be-
tween low-profile ridges.

The Acadian Forest is dominated by naturally-
regenerated, mixed-species stands that primarily dis-
play multi-cohort stand structures. Among the over
60 tree species that are found in the region are conif-
erous evergreen species such as red spruce (Picea rubens
Sarg.), balsam fir (Abies balsamea L. Mill.), eastern
white pine (Pinus strobus L.), and eastern hemlock
(Tsuga canadensis (L.) Carr.) as well as deciduous hard-
wood species such as red maple (Acer rubrum L.), yel-
low birch (Betula alleghaniensis Britton), sugar maple
(Acer saccharum Marsh.), American beech (Fagus gran-
difolia Ehrh.), paper birch (Betula papyrifera Marsh.),
and northern red oak (Quercus rubra L.). Common
forest types consist of mixed conifers (Picea-Abies),
mixed hardwood (Populus-Betula), mixed hardwood
and conifer (Quercus-Pinus), and wetland forests (Acer-
Picea).

2.2 Data

An extensive regional database of tree-level measure-
ments has been compiled for the Acadian Forest from
multiple sources (Weiskittel et al., 2010), which consists
of over two million diameter at breast height (DBH)
measurements from ∼10,000 plots. The database also
contains ∼1.07 million height measurements from five
sources, but missing values account for 12.6–99.9% of the
observations across the sources. Excluding the sources
with large numbers of missing height measurements,
data from the following four sources were used in this
study: 1) the Commercial Thinning Research Network
from the Cooperative Forestry Research Unit of the Uni-
versity of Maine (CTRN; Seymour et al., 2014), 2) the
Ecological Reserve Monitoring of Maine (ERM; Kuehne
et al., 2018), 3) the US Forest Service Forest Inventory
and Analysis in Maine (FIA; Bechtold and Patterson,
2005), and 4) the network of permanent sample plots
across Nova Scotia (NS PSP). An FIA plot comprised
four 168 m2 sub-plots. CTRN, ERM, and NB PSP plots
were 810, 168, and 400 m2, respectively. There were
49,546 plot-level observations from 4,201 plots available
in this study (Table 1). Measurement intervals at these
plots ranged 1–15 years, while the longest and average
measurement histories were 40 and 13 years, respec-
tively.
Missing height measurements from the four sources

were imputed using a species- and plot-specific mixed
effects model outlined by Robinson and Wykoff (2004).
Individual-tree volumes were estimated using a species-
specific taper function for the region, which uses DBH
and height as input (Li et al., 2012; Weiskittel and
Li, 2012). In each plot, several attributes describing
stand structure and composition were derived (Table 1).
Relative density was computed using an equation pro-
posed by Woodall et al. (2005) that predicts maximum
stand density index using average species-specific gravity
(USDA, 2010). Site productivity was estimated through
the dominant height and climate site index. The cli-
mate site index was based on the mean temperature of
the warmest month, the temperature difference between
the warmest and coldest month, and the ratio of precipi-
tation during the growing season to total annual precip-
itation (Weiskittel et al., 2011b). The climate site index
was considered more indicative of the mixed-species and
multi-cohort Acadian Forest than the dominant height
(Weiskittel et al., 2011b). The hardwood percentage in
each plot was computed based on the initial basal area
(Table 1).

2.3 Analysis

The primary goal of this study was to compare time-
explicit, state-space, and simultaneous approaches’ per-
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Table 1: Summary statistics of initial measurements (mean, minimum, and maximum) by data source, where CTRN
is the Commercial Thinning Research Network in Maine, ERM is the Ecological Reserve Monitoring of Maine, FIA
is the US Forest Service Forest Inventory and Analysis in Maine, and NS PSP is the network of permanent sample
plots across Nova Scotia.

CTRN ERM FIA NS PSP Overall
Attribute mean min max mean min max mean min max mean min max mean min max

Number of plots 129 −− −− 48 −− −− 2,799 −− −− 1,225 −− −− 4,201 −− −−
Number of observations 4,784 −− −− 48 −− −− 11,168 −− −− 33,546 −− −− 49,546 −− −−
Climate site index 13.7 11.4 17.4 13.5 11.4 15.5 14.7 9.6 24.8 12.8 9.0 17.3 14.1 9.0 24.8
Stem density (tree ha−1) 1,787 432 7,604 2,538 357 12,243 2,908 59 33,403 716 25 2,825 2,230 25 33,403
Relative density 0.54 0.20 0.98 0.57 0.10 0.99 0.36 0.00 1.00 0.36 0.00 0.98 0.37 0.00 1.00
Basal area (m2 ha−1) 25.0 8.1 53.2 32.0 5.4 64.1 20.1 0.0 74.9 15.6 0.2 64.5 19.0 0.0 74.9
Volume (m3 ha−1) 151.1 38.5 316.2 621.2 7.7 3,200.9 90.2 0.0 512.3 79.3 0.1 697.4 95.0 0.0 3,200.9
Mean DBH (cm) 14.1 7.9 20.2 24.8 13.4 35.1 15.4 2.5 44.5 15.5 9.1 60.2 15.5 2.5 60.2
Top height (m) 14.9 11.7 22.3 16.0 6.2 29.7 14.5 2.3 31.4 11.4 2.0 23.1 13.6 2.0 31.4
Hardwood (%) 2.7 0.0 66.2 46.4 0.0 100.0 46.3 0.0 100.0 32.3 0.0 100.0 40.9 0.0 100.0

formance on stand-level growth and yield predictions,
where growth was defined as the difference in volume
between two measurements. Other factors that may af-
fect the approaches’ performance have been controlled
to ensure the comparison was focused on the various ap-
proaches. Specifically, the same data introduced above
were used to develop the multiple approaches, and the
same Gompertz yield function in the form of the equa-
tion below was applied to each of the approaches. Fi-
nally, the Gompertz function utilized the same set of
predictors in different approaches.

yt = α · exp (−β · exp (−f (xt))) (1)

where yt is yield in volume (m3 ha−1) in any year t,
f(xt) = p1 · bat + p2 · rdt + p3 · hw is a linear function
of predictors. bat and rdt are basal area (m2 ha−1) and
relative density, respectively, in year t, and hw is the
percentage of hardwood in terms of initial basal area. α
(the asymptote) and β (the rate of change) are primary
parameters of Equation (1) in addition to the parameters
of p1 − p3.

Basal area has long been found to be strongly corre-
lated with volume (e.g., Harry et al., 1964), and how
densely a site is occupied affects the forms and vol-
umes of trees and their growth. Site occupancy was ac-
counted for by basal area and relative density in Equa-
tion (1). The Acadian Forest is in a transition zone
between the softwood-dominant boreal forests and the
northern hardwood forests. The metric of the percent-
age of hardwood was used to represent this stand com-
position complexity.

2.3.1 Time-explicit approach

The time-explicit approach adds a growth component
g(x) to Equation (1), and the resulting model of volume
yield (m3 ha−1) in year t2 is in the following form.

yt2 = α · exp (−β · exp (− (f (xt1) + g (xt2)))) (2)

where g(xt2) = (p4 + p5 · bat1 + p6 · rdt1 + p7 · hw +
p8 · CSI) · (t2 − t1) is a function of the growth period
between the years of t1 and t2, which often are obtained
from stand ages. CSI is the climate site index (used as
a metric of site potential productivity in place of site
index/dominant height, both of which are derived from
tree heights and difficult to accurately measure in the
field and often unavailable), and p4 − p8 are parameters
to be estimated. Equation (2) is the yield function of
Equation (1) when t2 − t1 = 0.

2.3.2 State-space approach

The state-space approach contains a set of transition
functions: {

dba
dt = rt · ba ·

(
1− ba

k

)
drd
dt = q3

(3)

where rt = (q0 + q1 · rdt + q2 · CSI), and q0 − q3 and k
are parameters to be estimated. This set of transition
functions of Equation (3) predict increments of basal
area and relative density (i.e., state variables) at any
year t while assuming the climate site index is time-
invariant. Predictions using Equation (3) is annualized
following the method outlined by (Chen et al., 2017b),

e.g., bat1+1 = bat1 +
dbat1

dt , bat1+2 = bat1+1 +
dbat1+1

dt ,
and so on. Both ba and rd are recursively predicted in
this way at an annual step until t2, the year of yield
prediction, is reached. Predicted values of ba and rd in
year t2 will then be fed into equation (1), the output
function, to predict volume yield. t1 and t2 need not
to be known in this approach, and the only information
required is the length of prediction, i.e., how many years
the recursive transition functions will move forward.

Integrals of Equation (3) show that basal area is a
logistic function of relative density, climate site index,
and initial basal area and has a sigmoidal pattern (i.e.,
bat = ba0·k

ba0+(k−ba0)·exp(−rt·t) . Consequently, basal area
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increment follows a parabolic trajectory. In addition,
relative density is a linear function of time, and its in-
crements are constant (i.e., rdt2 = rdt1 + q3 · (t2 − t1).
Both functional types meet biological expectations of the
growth process.

Equations (1) and (3) were separately fitted in the
state-space approach, i.e., basal area and relative den-
sity were first predicted using Equation (3), and their
predicted values were used as predictors to fit Equation
(1). All available pairs of observations over time were
used in the model-fitting process. For example, if a plot
was measured in years of t1, t2, and t3, both Equation
(1) and (3) were fitted from t1 to t2, from t2 to t3, and
from t1 to t3. The purpose was to improve model va-
lidity by utilizing measurements of various intervals to
increase sample size.

2.3.3 Simultaneous approach

The simultaneous approach has the same form as the
state-space approach but uses a different model-fitting
technique. In the state-space approach, transition func-
tions of Equation (3) are optimized to make the best
predictions of basal area and relative density, which are
subsequently inserted into Equation (1) as predictors to
optimize the output/yield function. Values of the two
predictors are fixed when they are inserted into Equa-
tion (1) because the fitting of the transition functions
of Equation (3) has already been completed. In con-
trast, Equations (1) and (3) are simultaneously fitted in
one step in the simultaneous approach. Basal area and
relative density predicted by Equation (3) are used as
predictors to fit Equation (1). If Equation (1) is not op-
timized, the fitting of Equation (3) will start over again
to generate new predictions of basal area and relative
density, which will again be used as predictors to fit
Equation (1). This process will iterate until Equation
(1) is optimized. Parameter estimates in both Equations
(1) and (3) are simultaneously returned at this point.

In summary, the state-space approach consists of
two sub-models (the transition functions and the out-
put/yield function) fitted in two separate steps, and the
output of the optimized transition functions of Equa-
tion (3) does not necessarily optimize the yield function
of Equation (1). The simultaneous approach combines
the two sub-models into one overarching model, and all
parameters in the overarching model are simultaneously
optimized to make the best predictions of volume yield
regardless of the intermediate estimates of basal area
and relative density in transition functions of Equation
(3). As highlighted above, the simultaneous approach
is the only approach that ensures path-invariance (e.g.,
Cieszewski , 2021; Cieszewski and Strub , 2018), which
is often critical for stand-level models (Burkhart and
Tomé, 2012).

2.3.4 Model fitting, goodness-of-fit, and comparison

The time-explicit, state-space, and simultaneous ap-
proaches introduced above were fitted with nonlinear
mixed-effects models using the lme4 package (Bates et
al., 2015) in R v4.4.0 (R Core Team, 2024). Random
effects were first tested on both primary parameters α
and β of the output/yield function (Equation 1). Ran-
dom effects on α (in terms of variance) were found to
be approximately 105 the size of those on β. Random
effects on α were further tested on levels of data source
and plot, and the size of the former was about twice the
size of the latter. The final models comprised random
effects on α across data sources and plots.
The goodness-of-fit of the models was summarized

and used in model comparison from four perspectives:
1) the significance of parameter estimates, and whether
the estimated values meet biological expectations, 2) the
Akaike Information Criterion (AIC), 3) mean biases, and
4) root mean square errors (RMSE). In addition, pre-
dicted values of volume and their 95% confidence bands
were compared with observed values. The confidence
bands were empirically obtained based on the mean and
standard error of predicted values in each of the 100 bins
evenly divided across the ranges of the predictors (basal
area, relative density, and hardwood percentage) in the
output/yield function (Equation 1).
The entire dataset was used for model construction

and comparison because data-splitting and, hence, cross-
validation rarely is adequate for relatively large datasets
such as the one used in this study (Kozak and Kozak,
2003). In addition, parameters estimated from the en-
tire dataset generally are more precise than those de-
rived from a portion of the data (Hirsch, 1991). Cross-
validation based on 50-50 simple random sampling with
replacements (permutation) was performed ten times,
within which parameter estimates were consistent, and
all RMSE statistics were within ±1 m3 ha−1 of the final
models.

3 Results

All parameter estimates, except p3 from the time-
explicit approach and q0 from the simultaneous ap-
proach, were significantly different from zero at the 0.05
significance level (Table 2). Estimates of the primary
parameters α and β of the output/yield function (Equa-
tion 1) were generally consistent across the approaches,
where α ranged 431-477 m3 ha−1, while β was 1.8-2.4
m3 ha−1 yr−1 (Table 2). Observed volumes exhibited
significant amounts of variation (Figure 1). Observed
and predicted volumes were positively related to basal
area and relative density (Table 2 and Figure 1), while
higher hardwood percentages resulted in slightly lower
volumes in all approaches (Figure 1). The 95% confi-
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Figure 1: Observed volumes and 95% confidence bands of predicted volumes from different modeling approaches over
the ranges of the predictors (basal area, relative density, and hardwood percentage) in the yield function.

dence bands of predicted volumes were centered in obser-
vations and generally linear across the range of observed
basal area, relative density, and hardwood percentage in
all approaches (Figure 1).

The relationship between observed and predicted vol-
umes was highly consistent across the approaches and
data sources. Overestimations were at very small scales
in the lower ranges of observed volume, while underes-
timations became increasingly noticeable after observed
volume surpassed 200 m3 ha−1, where the number of
observations decreased (Figure 2). Mean biases of pre-

dicted volumes were close to zero across the approaches
(Table 2). RMSE was 22.6 m3 ha−1 in the time-explicit
approach, 23.6 m3 ha−1 in the state-space approach, and
22.5 m3 ha−1 in the simultaneous approach (Table 2).
These values accounted for <20% of mean observed fi-
nal volume (i.e., equivalent to a R2 of >0.96 over an
average 13-year growth period). Mean biases were con-
sistently small across various levels of projection length,
relative density, and climate site index, while RMSE was
much smaller when projection length was shorter than
five years in all approaches (Table 3). Prediction errors
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Table 2: Parameter estimates and statistics of the time-explicit, state-space, and simultaneous modeling approaches
(random effects across the 4,201 plots are not reported here).

Tine-explicit State-space Simultaneous

Parameter
parameter
estimate

standard
error

p-value
parameter
estimate

standard
error

p-value
parameter
estimate

standard
error

p-value

Fixed effects
α 431.88 184.06 0.02 477.39 202.04 0.02 473.61 203.99 0.02
β 2.4938 0.0457 <0.01 2.4442 0.0369 <0.01 1.8060 0.0281 < 0.01
p1 (basal area) 0.0586 0.0016 <0.01 0.0550 0.0008 <0.01 0.0348 0.0011 <0.01
p2 (relative density) 0.7133 0.0733 <0.01 0.6128 0.0163 <0.01 1.1923 0.0530 <0.01
p3 (% hardwood) 0.0111 0.0104 0.28 -0.1307 0.0080 <0.01 -0.1390 0.0076 <0.01
p4 (intercept·year) -0.0125 0.0019 <0.01 −− −− −− −− −− −−
p5 (basal area·year) 0.0003 0.0001 0.02 −− −− −− −− −− −−
p6 (relative density·year) 0.0355 0.0050 <0.01 −− −− −− −− −− −−
p7 (% hardwood·year) -0.0082 0.0005 <0.01 −− −− −− −− −− −−
p8 (climate site index·year) 0.0022 0.0001 <0.01 −− −− −− −− −− −−
q0 (intercept) −− −− −− 0.1160 0.0004 <0.01 0.0026 0.0049 0.59
q1 (relative density) −− −− −− -0.1073 0.0010 <0.01 0.0455 0.0049 <0.01
q2 (climate site index) −− −− −− -0.0020 0.0001 <0.01 0.0042 0.0003 <0.01
q3 (relative density) −− −− −− 0.0159 0.0004 <0.01 -0.0107 0.0015 <0.01
k −− −− −− 50.248 0.5642 <0.01 59.366 1.6907 <0.01
Random effects
α (CTRN) -169.34 -184.66 -196.25
α (ERM) 634.99 696.70 704.09
α (FIA) -224.42 -240.95 -240.95
α (NS PSP) -241.23 -271.09 -266.90
AIC 471,820 476,164 471,445
Mean observed final volume (m3 ha−1) 122.7 122.7 122.7
RMSE (m3 ha−1) 22.6 23.6 22.5
Mean bias (m3 ha−1) 0.0 -0.1 0.0

Table 3: Mean biases and root mean square errors (RMSE) of volumes predicted by different modeling approaches at
various levels of projection length, relative density, and climate site index (percentages are of observed final volumes).

Number
of

observations

Time-explicit State-space Simultaneous
Mean
bias

RMSE
Mean
bias

RMSE
Mean
bias

RMSE

m3 ha−1 % m3 ha−1 % m3 ha−1 % m3 ha−1 % m3 ha−1 % m3 ha−1 %
Projection
length
(year)

<5 2,944 3.4 2.0 20.9 12.2 2.9 1.7 20.9 12.2 3.6 2.1 21.0 12.2
5-10 27,283 -2.2 1.8 23.1 18.9 -4.0 3.3 23.7 19.3 -1.9 1.6 23.1 18.9
>10 19,319 2.6 2.3 22.1 19.1 4.9 4.2 23.9 20.7 2.2 1.9 21.9 19.0

Relative
density

<0.3 17,401 0.3 0.6 15.4 31.3 2.3 4.7 17.8 36.2 0.1 0.2 15.4 31.3
0.3-0.6 21,436 0.3 0.2 23.1 17.0 -1.1 0.8 23.8 17.5 0.4 0.3 23.1 17.0
>0.6 10,709 -1.1 0.5 30.1 13.9 -2.1 1.0 30.7 14.2 -1.1 0.5 29.9 13.8

Climate
site
index

<10 645 0.2 0.2 23.0 20.5 0.6 0.5 26.6 23.7 0.4 0.4 23.2 20.7
10-14 30,454 0.2 0.2 23.6 18.5 0.1 0.1 24.8 19.4 0.2 0.2 23.5 18.4
>14 18,447 -0.3 0.3 20.8 18.2 -0.6 0.5 21.4 18.7 -0.3 0.3 20.8 18.2

appeared unbiased across the ranges of observed initial
basal area, relative density, and hardwood percentage in
all approaches (Figure 3).

4 Discussion

The time-explicit, state-space, and simultaneous ap-
proaches consistently predicted stand-level volume
growth and yield in the predominantly mixed-species
and multi-cohort Acadian Forest. All three models
yielded accurate and largely unbiased predictions across
various complex stands. Annual rate of volume growth

of 1.8-2.4 m3 ha−1 yr−1 (indicated by the parameter es-
timate of β) was consistent with a previous large-scale
study conducted in the same region (Chen et al., 2017a).
Predicted relationships between growth and yield and
stand/site attributes of basal area, relative density, and
hardwood percentage were highly comparable across the
models. The time-explicit approach had a simplistic
form, but similar prediction performance compared to
the other two more complicated methods. In compar-
ison, the simultaneous approach, despite being path-
invariant, was computationally challenging in simulta-
neously fitting several nonlinear functions, which is a
concern expressed among modelers. Meanwhile, predic-
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Figure 2: Observed and predicted volumes by different modeling approaches and data sources, where solid lines are
loess smooth functions of predicted volumes over observed volumes.
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Figure 3: Prediction errors (predicted − observed) from different approaches over the ranges of the predictors (basal
area, relative density, and hardwood percentage) in the yield function, where solid lines are loess smooth functions
of the errors.

tion improvements from the simultaneous approach were
not significant.

Complex state-space approach has been developed
in previous studies (e.g., Nord-Larsen and Johannsen,
2007; Stankova, 2015; Waldy et al., 2021), which may
have limited the approach’s adoption and application in
forest management and research. This study selected
rather simplistic equations for the different approaches
because the primary objective of this study was to com-
pare time-explicit, state-space, and simultaneous ap-

proaches’ performance in stand-level volume growth and
yield predictions. The simplistic equations were delib-
erately developed to focus the comparison on the dif-
ferent approaches and avoid complications from various
modeling strategies such as selections of state variables,
predictors, and specific transition functions.

State variables varied in previous models based on
the state-space approach (Castedo et al., 2007; Diéguez-
Aranda et al., 2006; Garcia, 1994; Stankova, 2015),
where a measure of stand occupancy, e.g., basal area,
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usually was a primary state variable. This measure was
frequently augmented by variables such as stem density
(i.e. trees per ha) to indicate the stage of stand devel-
opment/average tree size (e.g., Diéguez-Aranda et al.,
2006; Garcia, 1994; Stankova, 2015). Stem density has
been considered to decrease with increasing tree size,
but this inverse relationship between stem density and
tree size may only apply to pure even-aged stands (Van-
clay, 2009). In this study, stem density increased while
trees grew larger in the mixed-species stands, mean-
while, stem density decreased with increases in tree size
in the generally softwood stands in CTRN, consistent
with prior findings (e.g., Wagle et al., 2022). These ob-
servations agree with Vanclay (2009) and suggest that
the inverse relationship between stem density and tree
size probably should not be considered as a general rule
for transition functions in the state-space approach. Rel-
ative density replaced stem density to be a state variable
in this study, similar to Waldy (2021). Relative density
potentially is a better alternative to stem density be-
cause it is bounded between zero and one, hence com-
parable across stands and biologically consistent across
species (Chivhenge et al., 2024). Our preliminary anal-
ysis also showed that RMSE in basal area predictions
was 0.48 m2 ha−1 lower when using relative density in-
stead of stem density as a predictor. The relationship
between relative density and tree size also were consis-
tent across data sources such that they both increased
over time, and a transition function based on this rela-
tionship likely was representative of the Acadian Forest
and in agreement with the trend of increasing relative
density of US forests reported by Woodall and Weiskittel
(2021).

Site quality has been considered the most crucial fac-
tor in determining the potential productivity and, hence,
growth and yield of a site (Skovsgaard and Vanclay,
2013). Dominant height is commonly used as an indica-
tor of site quality in stand-level growth and yield mod-
els (e.g., Diéguez-Aranda et al., 2006; Fang et al., 2001;
Nord-Larsen and Johannsen, 2007). Dominant height is
derived from tree heights, which are difficult to measure
in the field and often unavailable accurately. In addi-
tion, site quality is time-invariant in that it does not
change within a relatively long time frame. However,
dominant height (and metrics derived from it) changes
dramatically over time. Consequently, a transition func-
tion has to be developed to accommodate changes in
dominant height. This adds unnecessary complexity to
the state-space approach. A climate site index derived
from climate variables (Weiskittel et al., 2011b) replaced
dominant height in this study. The climate site index is
time-invariant, relieving the need for a transition func-
tion in model development and simplifying the state-
space approach.

A notable advantage of the state-space and simulta-
neous approaches is the relief of the growth and yield
model’s dependence on the information of time (often in
the form of the difference in ages). The use of dominant
height to represent site quality in the state-space ap-
proach contradicts this advantage (e.g., Stankova, 2015;
Waldy et al., 2021), where dominant height has been
modeled as a function of age. In addition, age has
been used to predict dominant height in an inverse form
(i.e., 1/age), which means age will not be differenti-
ated/differenced away in a transition function and po-
tentially affects the state-space approach’s applicability
to mixed-species and/or multi-cohort stands, where in-
formation on age is not always readily available or even
straightforward to determine. Some dominant height
models utilized ages in the form of their difference as
input (e.g., Diéguez-Aranda et al., 2005). This age dif-
ference can be directly measured as the time interval of
two measurements without the burden of directly know-
ing ages (e.g., the difference in age is five years if we
know the measurement interval is five years, and there
is no need to use the second age, say 45 to minus the
first age, say 40). Our time-explicit approach (Equation
2), which explicitly used time interval as a predictor,
generally performed well in this study.

Individual-tree models have been considered the new
standard for forest growth and yield modeling (Weiskit-
tel et al., 2011a) and thought to be advantageous in
complex mixed-species and/or multi-cohort stands com-
pared to stand-level models (Garcia, 1994), but has not
been widely tested. This study showed the simplicity of
building and applying stand-level growth and yield mod-
els. These models also achieved relatively accurate and
largely unbiased volume yield predictions across com-
plex stands, comparable to those obtained using the
individual-tree level Forest Vegetation Simulator Aca-
dian Variant (Chen et al., 2018). This shows potential
and warrants further investigation of the applicability
of stand-level growth and yield models beyond single-
species and even-aged stands. Finally, taking advantage
of stand-level models’ relatively high accuracies in pre-
dicting stand-level summary statistics (e.g., basal area
and volume) to adjust and improve individual-tree level
growth and yield predictions in a multistage modeling
approach (e.g., Chen et al., 2023; Fridman and St̊ahl,
2001) will be another direction to utilize the potentials
of stand-level growth and yield models fully. Finally,
the continued exploration and development of robust
approaches for ensuring path-invariance and base-age-
invariance as well as addressing data hierarchies is crit-
ical for further stand-level growth and yield model re-
finement.
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