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Abstract. The traditional coefficient of determination or R2 is the proportion of variation explained
by a regression model versus the variation explained by the mean. This measure does not discriminate
well between alternative self-referencing models such as site index curves. The traditional R2 compares
the variation explained by a model with the variation about the mean dependent variable, a very simple
model. A generalized R2 based on the proportion of the variation explained by the self-referencing model
versus the variation explained by another simpler (yet more complicated than the mean) model provides
better discrimination between candidate models. We call this generalized R2 the Comparative Coefficient
of Determination or Comparative R2. Three growth series or plots from the South Africa Correlated Curve
Trend Study are used to illustrate the difference between the traditional R2 and the generalized R2.
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1 Introduction

The coefficient of Variation or R2 is commonly used
to evaluate the fit of regression models (Rao, 1973). R2

is used to describe how well a mathematical model fits
a dataset. For simple linear regression models it is the
proportion of the variation in the data explained by that
model beyond using only the mean of the data. As a pro-
portion, R2 must lie between zero and one with values
close to zero indicating a poor fit to the data and num-
bers approaching one indicating an excellent fit. This
measure of model fit has been commonly used to choose
between alternative models.

This paper is motivated by the desire for a more re-
alistic assessment of the fit of a special type of regres-
sion models, self-referencing models. One origin of self-
referencing models lies in the modeling of site index
curves (Bailey and Clutter, 1974; Cieszewski and Bai-
ley, 2000). The basic idea is that an individual sub-
ject’s (tree/plot/stand) height growth can be modeled
by an equation having some parameters that are com-
mon (global) to all subjects, and other parameters that
are subject specific (local). The local parameter varies
by subject and assumes a unique value for each subject.
Hence the total number of local parameters is equal to
the number of subjects. One or more global parameters
are common for all the subjects.

Because the self-referencing models offer good fit to
the data and the R2 is often close to one, the use of the
usual R2 to select the best model has limited value. The
practitioner is often faced with the problem of choosing
between two models, one with a slightly higher R2 but
more global parameters. The aim of this paper is to
propose a modified R2 that provides more powerful dis-
crimination between self-referencing models. The gener-
alized R2 compares the self-referencing model or alter-
nate model with a null hypothesis model.

Comparing the residual variation of a model with
the variation of using only the average makes sense if
an intercept is included in the model. However self-
referencing models are often constrained to pass through
zero height at zero age. For this reason it seems reason-
able to compare self-referencing models with a straight
line through zero, so the null model for R2 involves esti-
mating the slope of the line through zero rather than the
horizontal line of mean of the observations. Since a sep-
arate curve is fit to each individual subject it also makes
sense to allow the slope of the straight line through zero
to vary by individual subject. The generalized R2 in
this paper will compare self-referencing model residual
variation with residual variation from fitting a straight
line through zero to each growth series. A second alter-
native model of interest is to use a single average model
(often called Guide Curve) of the same form as the self-
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referencing model. This comparison evaluates the value
of the varying local parameter that takes on a unique
value for each subject. We call this generalized R2 the
Comparative Coefficient of Determination or Compara-
tive R2 and abbreviate it as CR2. The CR2 can also
be used to compare candidate model forms substituting
the sloped line with a default model.

2 Data

The data for this study comes from the South African
Correlated Curve Trend study of loblolly pine (Pinus
Taeda). Only a small portion of the data was used to
simplify analyses and to effectively illustrate the results
on graphs. A single plot from each of three locations
that was thinned prior to the onset of competition to 50
trees per hectare (135.5 trees per hectare) was used to
model average height over time. The plots with lowest
stocking were chosen to eliminate the impact of compe-
tition on height development. Figure 1 shows the rela-
tionship between height and age from seed for the three
plot locations.
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Figure 1: The relationship between average height and
age at three low stocking locations of the Correlated
Curve Trend Study.

This data is described in more detain in Strub and
Bredencamp (1985).

3 Models

Null models used in this paper include the mean, a
straight line through the origin for each growth series
and the base model for the site index equation. The
mean model is:

yij = α + εij (1)

The straight line model is:

yij = βixij + εij (2)

The base model is:

yij = e
α− β

xij + εij (3)

Where y is the response variable of interest (height), x
is the covariate (age), α and β are model parameters to
be estimated and e is the base of the natural logarithms.
Also yij = the height at the jth measurement of the ith

plot (i = 1, . . . , m, j = 1, . . .ni), xij is the age at
the jth measurement of the ith plot and εij ∼ N(0, σ2).
The base model was proposed by Schumacher (1939).
Bailey and Clutter (1974) suggested two self-referencing
forms of this model. The first site index equation form
is anamorphic in shape with asymptotes that vary by
growth series:

yij = e
αi− β

xij + εij (4)

Where αi is a parameter specific to the ith plot and
β is a global parameter. The second form of the site
index equation suggested by Bailey and Clutter (1974)
is polymorphic in shape but with a single asymptote:

yij = e
α− βi

xij + εij (5)

Where α is the global parameter, βiis a parameter that
varies by plot, and all other variables previously defined.
Cieszewski and Bailey (2000, eq. 14) suggested a poly-
morphic model with asymptotes that vary by growth
series:

yij = e
αi

“
1− β

xij

”
+ εij (6)

All variables are as previously defined.

4 Generalization

R2 is defined as the difference between the sum of
squared errors about the mean and the sum of squared
errors for a fitted regression model divided by the sum
of squared errors about the mean.

R2 =

m∑

i=1

ni∑

j=1
(yij − ȳ)2 −

m∑

i=1

ni∑

j=1
(yij − ŷij)

2
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ni∑
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Where ŷij is the prediction of the jth height for the ith

growth series and ȳ is the overall mean.

ȳ =

m∑

i=1

ni∑

j=1
yij

m∑

i=1
ni

(9)

R2 can be generalized into the CR2 by considering two
different models and the resulting estimates.

CR2 =
∑m

i=1

∑ni

j=1

(
yij − ŷ∗ij

)2 − ∑m
i=1

∑ni

j=1

(
yij − ŷij

)2

∑m
i=1

∑ni

j=1

(
yij − ŷ∗ij

)2 (10)

= 1 −
∑m

i=1

∑ni

j=1

(
yij − ŷij

)2

∑m
i=1

∑ni

j=1

(
yij − ŷ∗ij

)2 (11)

Where ŷ∗ijis the predicted height from the null model
(the mean for the original definition of R2) and ŷij is
the predicted height for the alternative model.

5 Results

The six models were fitted to the Correlated Curve
Trend Study data. Figure 2 shows the results for the
three null models. Model (1) or the average height re-
gardless of age used in the original definition of R2 does
not fit the data well at all and has high error sum of
squares. This explains why R2 for site index equations
are usually quite high. Models (2) and (3) fit the data
better resulting in smaller error sum of squares and a
more discriminating CR2.
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Figure 2: The relationship between average height and
age at three low stocking locations of the Correlated
Curve Trend Study.

Figure 3 shows the fit for the three site index equa-
tions, the anamorphic model (4), the polymorphic sin-
gle asymptote model (5) and the polymorphic multiple

asymptote model (6). Both models (4) and (6) fit all
three plots well. Model (5) does not fit the top or bot-
tom plot well at all.
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Figure 3: The relationship between average height and
age at three low stocking locations of the Correlated
Curve Trend Study.

Table 1 shows the usual R2 with null model (1) in col-
umn 2, the generalized CR2 for null model (2) in column
3 and the generalized CR2 for null model (3) in column
4. Notice that the CR2 provides greater discrimination
between models, especially in the case of model (3) that
does not fit the data well as shown in Figure 2.

Table 1: A comparison of the usual R2 and CR2 for
three null models and three alternative models fit to the
Correlated Curve Trend Study data.

model (1) model (2) model (3)
model (4) 0.991 0.927 0.929
model (5) 0.956 0.629 0.639
model (6) 0.993 0.942 0.944

Another possibility is to consider model (5) the null
model. Rows two and three of table 2 show the pro-
portion of extra variation explained by the anamorphic
model (4) and polymorphic multiple asymptote model
(6) over the polymorphic single asymptote site index
model (5). The last line of table 2 shows the proportion
of additional variation explained by the polymorphic
multiple asymptote model over the anamorphic model.

The anamorphic model explains 80.4% more varia-
tion than the polymorphic single asymptote model. The
polymorphic multiple asymptote model explains 84.4%
more variation than the polymorphic single asymptote
model. The polymorphic multiple asymptote model
explains 20.45% more variation than the anamorphic
model.
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Table 2: CR2 for the three site index models considered
in this paper.

Comparison CR2
model (4) versus model (5) 0.804
model (6) versus model (5) 0.844
model (6) versus model (4) 0.205

6 Discussion

The traditional R2 indicates that all three models pro-
vide a good fit to the data, explaining over 95% of the
error in the data. Examination of Figure 2 reveals that
model (6) does not accurately fit the data, with too large
a spread between plots at younger ages and too narrow
a spread between plots at older ages. The lower 64%
of variation explained when compared to straight lines
through zero at time zero of the generalized R2 is a bet-
ter assessment of model fit to the data. Examination of
Figures 2 indicates that both models (5) and (6) fit the
data reasonably well., although the fit is not ideal for ei-
ther model. The traditional R2 seems to indicate a near
perfect fit for both models with over 99% of the variation
explained in both cases. The generalized R2 assessment
of 93% for model (4) and 94% for model (6) seems more
reasonable. Comparison of the three candidate models
with model (3) in table 1 provides further evidence of
the poor fit of model (5). The anamorphic model (4)
explains 93% more variation than a single Schumacher
curve. The polymorphic multiple asymptote model (6)
explains 94% more variation than a single Schumacher
curve. The polymorphic single asymptote model (5) ex-
plains only 63% more variation than a single curve. Fi-
nally comparison of the three models in table 2 reinforces

the poor fit of model (5) with model (4) explaining 80%
more variation and model (5) explaining 84% more varia-
tion. Model (6) explains 20% more variation than model
(4).

7 Conclusion

The Comparative R2 provides better discrimination
between site index models than the traditional R2. CR2

with null model (1) could be used instead of R2 for any
model constrained to be zero at the origin.
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