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MISSION IMPOSSIBLE: POSITIONS DETERMINED BY BASIC
MAPPING-GRADE AND RECREATION-GRADE GNSS

RECEIVERS CANNOT EMULATE THE ACTUAL SPATIAL
PATTERN OF TREES

T. Lee , P. Bettinger , K. Merry , V. Bektaş , C.J. Cieszewski

Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA

Abstract. Global navigation satellite systems (GNSS) can provide valuable spatial information for
effectively mapping and navigating through complex terrain and forest conditions. Relatively accurate
positional information is essential for certain algorithms and models that base analyses on the spatial
arrangement of trees, and for management of forestry operations. The accuracy of GNSS receivers
has been well-tested under many environmental conditions. Depending on the technology selected and
conditions within which it is employed, different amounts of variation will occur in the determination of
a horizontal position. However, studies involving the spatial pattern and distribution of tree locations
(point positions) observed by independent GNSS receivers generally have not considered the horizontal
position error inherent in the spatial data. We conducted this study to investigate whether tree locations
determined by recreation- and mapping-grade GNSS receivers can adequately represent the real point
pattern of trees in a forest. The study area was a pine seed orchard located at the Whitehall Forest
in Athens, Georgia (USA), that consisted of a regular pattern of trees. We tested three different GNSS
receivers: one mapping-grade receiver and two recreation-grade receivers (traditional, handheld-type,
and non-traditional types, GPS watch). With each receiver we determined tree locations at cardinal
points around the stems of 112 trees (at North, South, East, and West, sides of the stems) and estimated
the middle point measurement of two cardinal points (North-South and East-West). In addition, we
used the average of all cardinal points (All) to determine tree locations. We compared these observed
tree locations to actual tree locations, which were determined through precise field measurements and
high-precision GPS base points. This study confirmed that the horizontal positional error of mapping
grade receivers was significantly lower than those of recreation grade receivers, regardless of measurement
method. However, the observed point pattern of trees from the GNSS observations of both recreation- and
mapping-grade receivers failed to adequately represent the actual regular point pattern of the trees, as the
positional error observed was not consistently projected in the same direction and with the same magnitude.

Keywords: Global navigation satellite system, complete spatial randomness, regular pattern,
clustered pattern, root mean squared error, GPS receivers.

1 Introduction

The natural pattern of the location of trees is a re-
sult of ecological processes involving self-thinning and
competition between trees and seed dispersal mecha-
nisms. In planted forests, the pattern of the location
of trees is operationally influenced yet can also be influ-
enced by ecological processes involving pioneer and nat-
ural establishment of non-planted trees. For assessing
patterns of trees, spatial point pattern analysis (SPPA)

has become increasingly popular in ecological research
(Gadow et al. 2012, Velázquez et al. 2016, Woodall 2002,
Wiegand et al. 2013, Wiegand & Moloney 2013). As a
way for analyzing the pattern of trees, SPPA allows one
to characterize forest structure (i.e., dispersed, random,
clustered) and test ecological hypotheses about under-
lying natural processes (Law et al. 2009, Ripley 1981,
Velázquez et al. 2016, Wiegand & Moloney 2013). For
example, SPPA has been used to investigate the effects
of seed dispersal mechanisms (Garzon-Lopez et al. 2014,
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Seidler & Plotkin 2006) and to analyze the role of inter-
actions and competition between trees (Dohn et al. 2017,
Fajardo et al. 2006, Uria-Diez & Pommerening 2017).

SPPA compares the pattern of observed spatial data
to a null model using various summary statistics. To
evaluate the pattern of objects, SPPA uses point loca-
tions (i.e., locations trees, nests, or shrubs) and sup-
plementary information (attributes) that characterize
the object (i.e., surviving versus dead, species, size)
(Velázquez et al. 2016). Further, the data can be clas-
sified as unmarked and marked spatial data based on
its properties. For example, unmarked spatial data
having a priori properties include such things as tree
species, while marked spatial data having a posteri-
ori properties including such things as status (surviv-
ing versus dead), size, or some other property from
a marking process (Velázquez et al. 2016, Wiegand &
Moloney 2013). SPPA provides a description of the spa-
tial pattern of measured features using summary statis-
tics, which are classified as either (a) numerical or func-
tional or (b) location- or point-related (Illian et al. 2008,
Wiegand & Moloney 2013). Outcomes of SPPA can rep-
resent spatial pattern as a value (e.g., intensity or the
mean distance to the nearest neighbor) (Pommerening &
Grabarnik 2019, Velázquez et al. 2016), and these have
been widely used in modern point pattern analysis to
represent a point pattern as a function of scale (Wie-
gand & Moloney 2013).

The null model (also referred to as the point process
model or point process) associated with a SPPA analy-
sis is a mathematical model representative of a certain
point pattern (Wiegand & Moloney 2013). The null
model plays an important role in SPPA because it is
used to determine whether an observed spatial pattern
can be statistically distinguished from it or not (Car-
rer et al. 2018, Diggle 2013, Wiegand & Moloney 2013).
The simplest version of a null model is complete spatial
randomness (CSR) following the homogeneous Poisson
process, which assumes an equal intensity or distribution
of objects across a study area (Carrer et al. 2018, Law et
al. 2009, Wiegand & Moloney 2013). One might expect
that a naturally regenerated or uneven-aged forest would
possess CSR with respect to tree locations. Otherwise,
a null model may also follow a heterogeneous Poisson
process, which has a different intensity function that de-
pends on the locations of objects within the study area
(Carrer et al. 2018, Pommerening & Grabarnik 2019,
Wiegand &Moloney 2013). SPPA compares an observed
pattern to a confidence envelope, or group of null models
generated by Monte Carlo simulation (Law et al. 2009).
When an observed pattern of objects lies outside of a
confidence envelope with a certain confidence level, this
provides evidence of a departure from the null model
(Wiegand & Moloney 2013). Otherwise, when an ob-

served pattern of objects fails to prove departure from
the null models, this indicates that there is no corre-
lation between observed points, which is equivalent to
saying that there are no ecological interactions evident
in the data (Pommerening & Grabarnik 2019).

The result of SPPA is influenced by many factors. For
example, spatial scale (size of sampling site) for the de-
tection of tree patterns can be important, as larger sam-
pling scales allow one to better detect a spatial pattern,
such as clustering, that are not evident at smaller scales
(Carrer et al. 2018, Garzon-Lopez et al. 2014). Fur-
ther, using the heterogeneous Poisson model as a null
model for emulating CSR may provide more reliable re-
sults than using the homogeneous Poisson model, since
constant intensity across a study site may not be guaran-
teed (Carrer et al. 2018). Perry et al. (2006) and Hui et
al. (2007) suggested that each summary statistic used in
evaluating spatial pattern has limitations and strengths.
Further, Gadow et al. (2012) and Pommerening (2008)
pointed out that the application of spatial pattern anal-
ysis may be limited by the size of study area. There-
fore, Velázquez et al. (2016) and Wiegand et al. (2013)
suggested that the various summary statistics should be
applied together, to avoid omitting important meanings
from spatial patterns.

In describing the distribution of trees in a forest, the
positions (spatial coordinates) of tree boles are an es-
sential input for SPPA (Aguirre et al. 2003, Pommeren-
ing 2002). For forest growth and yield purposes, the
positions of tree boles are also needed for distance-
dependent tree growth models. However, collecting spa-
tial data of tree bole positions can be very challenging
due to the cost and time associated with the data col-
lection effort, making the practical application of SPPA
challenging (Aquirre et al. 2003, Gadow & Hui 2002,
Gadow et al. 2012, Velázquez et al. 2016). For exam-
ple, it might take more than 30 minutes to determine a
tree’s location if a survey-grade GNSS receiver is used.
This is one reason why survey-grade GNSS receivers are
not widely used in practice except to locate property
corners or other important landscape positions. Further
complicating the collection of tree bole locations, several
studies that have been conducted to evaluate GNSS re-
ceiver accuracy in forested areas revealed that mapping-
grade and recreation-grade GNSS receivers have hori-
zontal positional errors ranging on average more than
2m (Danskin et al. 2009, Ransom et al. 2010, Sigrist et
al. 1999) and more than 6m (Danskin et al. 2009, Lee et
al. 2020), respectively, in any direction from the true po-
sition. A greater positional error is often observed when
using recreation-grade GNSS receivers (small inexpen-
sive GNSS specific units, cellular phones, watches, etc.),
yet recreation-grade receivers are still utilized frequently
due to their applicability and accessibility. Accord-
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ing to Bettinger et al. (2019), foresters in the southern
United States commonly use cellular phones and tablets
(70.6%) for positioning and navigation, followed by other
recreation-grade receivers (49.4%) and mapping-grade
receivers (43.8%). Bettinger et al. (2019) also indi-
cated that only a few respondents used survey-grade
receivers (2.8%) and mapping-grade receivers with dif-
ferential processes (DGPS) (15%) in their normal work
activities. Platforms such as iNaturalist and iTree Eco
have also allowed citizen observers to provide positional
data using recreation-grade GNSS receivers (Fauzi et
al. 2016a). Therefore, the quality of positions deter-
mined by GNSS for individual trees may be a great con-
cern.

Compounding the issue of horizontal position accu-
racy, the physical direction of the position error is often
unreported and assumed randomly distributed around a
true position, yet the directionality of error may be influ-
enced by nearby vegetation (Bettinger & Merry 2012b).
Current SPPA studies do not consider the inherent er-
ror in positions determined by GNSS receivers, poten-
tially leading to analysis error when spatial relation-
ships are based on the distance between objects (i.e.,
distances between objects or counts of objects within
certain distance). To overcome these challenges, differ-
ent approaches to estimate the positions of trees have
been explored, including the use of base maps facilitated
by satellite images (Atkinson et al. 2007, Moustakas et
al. 2008), aerial images from aircraft or unmanned vehi-
cles (Garzon-Lopez et al. 2014, Moustakas et al. 2008,
Xu et al. 2019), or LiDAR (light detection and rang-
ing) including terrestrial and airborne laser scanning
(Trochta et al. 2013). However, there are limitations
in estimating the location of tree stems from these types
of images, due to image quality, spatial resolution, and
feature displacement. Specifically, when identifying the
location of a tree bole, an interpreter is more commonly
locating the centroid of a tree canopy as opposed to the
location of a tree bole, and the corresponding pattern
concerning centroids of tree crowns may differ from the
pattern concerning the tree boles (Uria-Diez & Pom-
merening 2017, Vacchiano et al. 2011). Further, the
crowns of some overtopped or suppressed trees may not
be evident in an analysis of satellite or aerial imagery.
Additionally, the quality of images generated by LiDAR
can be significantly deteriorated by weather conditions
(water, dust, or wind) and the presence of rough terrain
(Trochta et al. 2013).

Tree bole coordinates have been used in various stud-
ies to assess spatial pattern (Dohn et al. 2017, Hui
et al. 2007, Law et al. 2009, Uria-Diez & Pommeren-
ing 2017), but the specific methods employed for collect-
ing the coordinates of tree bole locations are often not
described or it is suggested that the locations were deter-

mined using GNSS technology. Therefore, our objectives
for this study are twofold. First, we evaluate the inher-
ent positional error of tree bole locations using three dif-
ferent types of GNSS receivers and several assumptions
regarding the data collection protocols. These data col-
lection protocols emulate common practices employed by
the typical forestry professional in the southern United
States for capturing the position of resources of interest.
Therefore, survey-grade GNSS receivers and the use of
real-time kinematic (RTK) positioning were not tested.
In RTK positioning, the mobile unit (the one used by
the professional collecting data) relies on the acquisition
and use of real-time position correction information that
is supplied by an independent reference station (or base
station) or a virtual reference station positioned over a
known location. Second, we compare the observed spa-
tial patterns of tree boles to the actual spatial pattern
of trees measured using ground surveying methods, to
determine whether tree bole coordinate positions deter-
mined from GNSS receivers can retain the fidelity of the
real-world spatial pattern of trees.

2 Materials and Methods

This study was conducted in a loblolly pine (Pi-
nus taeda) seed orchard within the Whitehall Forest in
Athens, GA. Trees were planted in a regular grid ar-
rangement, with an average spacing of about 6.15m. At
the time of this study, the trees were 34 years old (Fig-
ure 1). While representative of a regular pattern, the
distances between the trees along and between rows are
not exact, due to the natural growth and development
forces on the trees. The density of the seed orchard was
estimated to be 193 trees ha−1, with a basal area of 26.4
m2 ha−1. It is uncommon to use a seed orchard as study
site for SPPA because the distribution (pattern) of trees
is uniformly dispersed. However, by using the seed or-
chard we were able to avoid influence associated with the
spatial placement of plots having environmental hetero-
geneity and potential clustering characteristics (Garzon-
Lopez et al. 2014). A total 112 trees were used across
the study site (0.61 hectare), which is generally compa-
rable to area required to reliably assess spatial pattern
(Carrer et al. 2018). Therefore, this study site serves as
a control pattern for evaluating the point pattern of tree
bole positions determined using GNSS technology.

To determine the spatial locations of tree boles in the
study area, three different GNSS receivers were used: a
Trimble GNSS receiver (Juno T41, Trimble Inc., USA),
a Garmin GNSS receiver (Oregon 700, Garmin, Olathe,
KS, USA), and a Suunto GPS watch (Ambit Peak 3, Su-
unto, Finland). The Trimble Juno T41 GNSS receiver
is classified as a mapping-grade receiver based on an es-
timated horizontal accuracy of 1 to 5m (Lee et al. 2020)
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Figure 1: The study plot with 26 control points. These
control points were determined based on the surveyed
control points (#7, #20, CP1, and CP2) using trilater-
ation. Each control points apart from each other in 6
meters.

and a general price range of $1,000 to $9,000 (Bettinger
& Merry 2011). The Garmin Oregon 700 GNSS receiver
and the Suunto GPS watch are classified as recreation-
grade receivers based on an estimated horizontal accu-
racy between 6 to 12m (Danskin et al. 2009, Lee et
al. 2020) and a general price range of $100 to $700.
These horizontal accuracy statements are based on com-
mon, practical use of the devices, which consist of an
average of a collection of position fixes (all determined
within about 30 seconds or less) from the mapping-grade
device, and one waypoint from the recreation-grade de-
vices to determine a horizontal position.

The Trimble GNSS receiver was equipped with a rel-
atively large GPS antenna manufactured by Inpaq tech-
nology Co. Ltd (Taiwan) (70Ö43.18Ö9mm), which has
the ability to utilize both GPS (United States) and
GLONASS (Russian Federation) commercially available
satellite signals. The receiver uses SOLO Forest soft-

ware (Trimble Inc., USA) to facilitate data collection
with masks limiting the maximum PDOP (positional di-
lution of precision) and minimum SNR (signal to noise
ratio), and allowing the use of the Wide Area Augmenta-
tion System (WAAS) for near-real time signal augmen-
tation. The maximum PDOP and minimum SNR values
were set to 8 and 4, respectively, and WAAS augmenta-
tion was enabled. A PDOP value reflects the quality of
satellite constellation arrangement; a lower PDOP value
suggests a preferable satellite geometry (wider satellite
spacing), which can help to minimize trilateration error
and perhaps provide more accurate position descriptions
(Lewis et al. 2007). A PDOP value of 4 or less suggests
rather good satellite geometry has been obtained, and a
PDOP value greater than 9 suggests rather poor satellite
geometry. So, the maximum PDOP value of 8 assumed
represents a moderate setting for satellite geometric ar-
rangement in this study. A position was determined by
the Trimble receiver by averaging around 15 position
fixes (one per second) during each visit to each tree,
which is typical in practice when using this device.

The Garmin GNSS receiver was equipped with a GPS
antenna made by Cirocomm Technology Corp. (Taiwan)
(size: 15Ö15Ö4mm). Like the Trimble receiver, the
Garmin receiver can utilize both GPS and GLONASS
satellite signals. The Garmin receiver has limited con-
figuration options and does not allow one to set the
maximum PDOP and minimum SNR values. However,
the WAAS augmentation system was employed. The
Garmin receiver has a function to determine a position
by averaging multiple position fixes, but this function
was not used in this study. Positions were determined
using a single position fix (waypoint), which is com-
mon in practice when using this device. Data was col-
lected and stored using the WGS84 coordinate system,
and data were downloaded using “basecamp” software
(Garmin International, USA).

The Suunto GPS watch is considered a non-traditional
recreation-grade receiver. It is equipped with a GPS an-
tenna equal in size to the Garmin GNSS receiver’s (size:
15 x 15 x 4mm) made by Patron Co. Ltd (Korea). Sim-
ilar to the Garmin receiver, the Suunto GPS watch has
limited configuration options. A user can only change
the GPS coordinate system specified for data collection.
Here, the GPS coordinate system for data collection was
set to UTM NAD1983. The Suunto GPS watch has no
function for averaging multiple position fixes to deter-
mine a location, so a position was recorded as one point
per each visit to each tree. Prior analysis of this GPS
watch (Lee et al. 2020) suggested that it can provide
an average horizontal position accuracy of 29.6m in an
uneven-aged deciduous forest during the leaf-on condi-
tions, and 22.1m in an older pine forest in the southern
United States.
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In prior observational studies, average horizontal po-
sition accuracy has been estimated for various types of
GPS devices in forested conditions. However, the direc-
tion of the error around a control point was not assessed
except in one study (Bettinger & Merry 2012b). The
combination of horizontal and directional error could
affect the pattern of individual trees if mapping them
were the main purpose. This interplay has yet to be re-
searched and represents an area of novelty of this study.
If one assumed that the direction of error of point lo-
cations for features such as trees was consistent within
a short period of time, then the determined point po-
sitions should represent well the point pattern of the
trees that they represent. Unaugmented GNSS position
fixes collected with autonomous recreation-grade GNSS
receivers have been used to develop databases of urban
tree locations (Green et al. 2016, Tait et al. 2009) and
rural forest tree locations (Fauzi et al. 2016b), yet in
the latter case the data were deemed unsuitable for ade-
quately describing individual tree locations. Alternative
technologies such as RTK GNSS (Khot et al. 2006), dif-
ferential GNSS, or simultaneous localization and map-
ping (SLAM) algorithms (Fan et al. 2018) may help im-
prove horizontal position accuracy for individual trees
in forests. However, as we noted earlier, we did not em-
ploy these augmentations during our tests as they are
not commonly used in practice in the southern United
States (Bettinger et al. 2019).

The basis for the real point pattern of tree boles in
our study area involved a ground survey of tree loca-
tions, beginning with the determination of three ground
control points using a mapping-grade receiver (Nomad
1050, Trimble Inc., USA) equipped with an external an-
tenna (Garmin GPS 19x HVS, Garmin International,
USA) and situated on a road next to the seed orchard
(Figure 1). The mapping-grade receiver was allowed to
warm up for 30 minutes, then position fixes were col-
lected for a 20-minute time period on three different oc-
casions. The mean northing and easting for each mea-
surement period was then used to estimate each control
point location. The mean northing and easting coor-
dinates had standard deviations of 0.17m and 0.45m,
so these ground control points were considered to be
relatively accurate locations. Tree bole locations were
then estimated by triangulating the physical distance
between trees, the distance from a control point, the
azimuth from each tree to a ground control point, and
the azimuth from tree to tree (Kiser 2008). These mea-
surements were collected using a measuring tape and a
laser rangefinder (TruPulse 360R, Laser Technology Inc.,
Centennial, CO, USA). The diameter at breast height
(DBH) for each tree was also measured. In estimating
the distance between two trees or between trees and the
ground control point, the distance to the center of a tree

stem was determined by adding half of the DBH to the
measured distance. As multiple distance measurements
were collected between sample trees, tree location was
estimated with the optimization function using R (ver-
sion 1.1.463, RStudio, Inc., Boston, MA, USA) to mini-
mize the error derived from the difference between mea-
sured distance and calculated distance. Since the laser
rangefinder has a manufacturer’s reported error of less
than 0.5°in azimuth, the manufacturer’s angle error was
considered by generating random numbers within this
error range (0° to 0.5°) centered on the measured angle
value to obtain the calculated distance. The estimated
tree locations by optimization were assumed to be the
basis for comparison against the GNSS-determined tree
locations.
Tree bole locations determined using the three GNSS

receivers were collected on four different occasions, at
each cardinal position (north, south, east, and west)
around a tree, and averaged to investigate whether the
data collecting location around trees had significant ef-
fects on positional accuracy. In total, there were seven
different data collection methods:
Method “All”: the mean position of 16 points col-

lected from every cardinal direction
Method “NS”: the mean position of 8 points collected

from north and south sides of each tree
Method “EW”: the mean position of 8 points collected

from east and west sides of each tree
Method “N”: the mean position of 4 points collected

from north side of each tree
Method “S”: the mean position of 4 points collected

from south side of each tree
Method “E”: the mean position of 4 points collected

from east side of each tree
Method “W”: the mean position of 4 points collected

from west side of each tree
The data collection process was time consuming and

therefore it was not possible to complete in a single day.
Instead, data were collected over a period of three weeks.
We visited the study site at a similar time period (be-
tween 1 p.m. and 4 p.m.) of the day only when the
weather was not severe (rainy, cloudy or windy). In this
study, however, the weather conditions were not mon-
itored, as it has been shown that local climatic condi-
tions have little effect on positional accuracy of mapping-
grade and recreation-grade GNSS receivers (Bettinger &
Fei 2010, Ransom et al. 2010, Merry & Bettinger 2019).
During the data collection effort, GNSS receivers were
held on top of a monopod with a leveling device, to main-
tain a constant position. The monopod was located 1m
away from the stem of each tree, and the researcher al-
ways stood on the north side of the monopod. One half
of each tree’s DBH was added to the 1m of distance be-
tween the tree and the position of the monopod. This
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distance was used to locate the center of the tree stem
from observed spatial data. Before collecting coordinate
locations, both the Garmin GNSS receiver and the Trim-
ble GNSS receivers were allowed to warm up for about 5
minutes. The Suunto GPS watch did not need warm-up
time because it was always on and ready for collecting
spatial data.

The first hypothesis of the study was that the hor-
izontal positions determined using the different GNSS
devices and the different methods to estimate tree bole
location were not statistically different. The horizontal
accuracy of data collected using each GNSS receiver was
determined using the root mean square error (RMSE),
which can be calculate as

RMSE =

√√√√ n∑
i

((xi − x)
2
+ (yi − y)

2
)

n
(1)

Where n is the total number of observations in a visit; i
is the ith observation of the visit; xi and yi are the lon-
gitude and latitude, respectively, of the ith observations;
and x and y are the assumed true easting and northing of
the associated tree location. The RMSE is widely used
for horizontal position accuracy with GNSS data (Ran-
som et al. 2010, Sigrist et al. 1999). In addition to it, the
root squared error of the mean (RSEM) was calculated
based on the mean center’s coordinates. The direction
and tendency in collected data was investigated using
a standard deviational ellipse described by an orienta-
tion angle and an anisotropic ratio (Ia) (Lee et al. 2020,
Hung et al. 2019). To test the first hypothesis related
to the RMSE and parameters of standard deviational
ellipses, we applied the one-way ANOVA and Kruskal-
Wallis test using R Studio software (2022.02.0, RStudio,
Inc., Boston, MA, USA). The RSEM and parameters of
standard deviational ellipses were calculated with Ar-
cMap GIS software (version 10.7.1, Esri Inc., Redlands,
CA, USA).

Ia =

(
R− r

R

)
100 (2)

The second hypothesis of this study was that the spatial
pattern of tree locations determined using the GNSS re-
ceivers was completely random. The seed orchard trees
planted in a regular pattern allowed us to assess this
hypothesis that GNSS-determined positions are repre-
sentative of a certain spatial pattern. To analyze the
observed distributions (patterns) of tree boles, various
kinds of distance-based statistical methods were applied
including the average nearest neighbor (ANN) analysis,
g(r) function, and L̂ (r) function so not to omit impor-
tant information regarding spatial scale (Velázquez et
al. 2016, Wiegand et al. 2013). The ANN analysis was
applied using ArcMap GIS software (version 10.7.1 Esri

Inc., Redlands, Cam USA) to determine whether the
observed pattern of tree distribution in the seed orchard
follows the CSR process. ANN analysis provides the
ANN ratio (or an R-statistic) by comparing the average
distance (D̄0) from each object (i.e., tree position deter-
mined using a GNSS receiver) to its nearest object (i.e.,
another tree position) against the expected average dis-
tance (D̄E) under CSR. It also provides its significance
using p−values and z-score indicating whether the ob-
served patterns are statistically departed from the null
model of CSR (Wiegand & Moloney 2013) as follows:

D̄0 =

n∑
i=1

di

n
and D̄E =

0.5√
n/A

(3)

ANN =
D̄0

D̄E
(4)

Where di is the distance between tree i and its nearest
neighboring tree, n is the total number of trees, and A
is the study site area.
In this study, the ANN ratio (R) represents how the

point patterns of the GNSS-determined positions are dis-
tributed. For example, when R = 1, points are consid-
ered to be distributed randomly. When R >1, points
exhibit a dispersed point pattern (which would most
closely emulate a regular pattern). When R <1, points
are considered to exhibit a clustered pattern (Clark &
Evans 1954).
The L(r) function is a transformed version of ‘Rip-

ley’s K function (K(r))’ and is widely used for SPPA in
ecological literature (Gadow et al. 2012, Law et al. 2009,
Wiegand & Moloney 2013). TheK(r) function describes
the pattern based on the quantity of the intensity (λ)
and K(r), λ ·K(r), which is the expected number of fur-
ther points within distance r of the typical point (Wie-
gand et al. 2013, Wiegand & Moloney 2013). Since the
expected number of points is increased at the rate of
r2 when using the K(r) function, it can be transformed
to the L(r) function (Wiegand & Moloney 2013). Cal-
culated from K(r), the L(r) function (Besag 1977) is
derived as follows:

K (r) =
A

n2

∑n

i=1

∑n

j
w−1

ij Ir(uij) (5)

L (r) =

√
K (r)

π
(6)

Further, the L(r) function can be normalized as below:

L̂(r) = L(r)− r (7)

Where A is the study area, r is the radius, n is the
number of individuals, Ir (uij ) is an indicator function
(which is either 1 when uij <r or 0 when uij >r), and
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wij is a weight value for Ripley edge correction. In this

study, the L̂(r) function was applied because it provides
more interpretable graphs than K(r) and L(r) (Gadow
et al. 2012). Since L̂(r) has a value of 0 under CSR, it is
easier to be assessed against the observed pattern (Wie-
gand & Moloney 2013). A positive value at distance r
indicates that there are more points than the expected
number of points, indicating a tendency toward cluster-
ing. Otherwise, a negative value at distance r means
that there are less points than expected, indicating a
tendency toward dispersing.

The pair correlation (g(r) function) was also applied
to analyze the observed patterns. The g(r) function is
closely related to the K(r) function because both are
second-order statistics. However, the g(r) function is
discernable in that it is a non-cumulative function, ac-
counting the expected point density within a ring with
radius (r) and width (dr) centered in the typical point
(Wiegand et al. 2013). Although cumulative functions
including K(r) and L(r) function were still frequently
used, we applied the g(r) function because it provides
better assessments when it is compared to cumulative
functions (Gadow et al. 2012, Hui et al. 2007, Law
et al. 2009). When it comes to the cumulative func-
tion, effects observed at short spatial scales can obscure
the effects observed at larger spatial scales (Wiegand &
Moloney 2013). The g(r) can be calculated from K(r)
(Stoyan & Stoyan 1996):

g(r) =
dK(r)

dr

/
2πr (8)

The g(r) provides value of about 1 when the data rep-
resent a CSR pattern, which is relevant to the indepen-
dent of the intensity of the pattern (Gadow et al. 2012).
Therefore, g(r) is considered as a summary statistic that
discerns whether the observed pattern is clustered or
dispersed (Wiegand & Moloney 2013). For example, if
the pattern has a tendency toward dispersion, it will
have fewer nearby points at small distance than the ex-
pectation under CSR, so it will result in a value less
than 1. Otherwise, when the pattern has a tendency to-
ward clustering, it will have more nearby points, which
is equivalent to a value larger than 1. These summary
statistics are frequently used for SPPA in ecology (Hui
et al. 2007, Perry et al. 2006, Velázquez et al. 2016,
Wiegand & Moloney 2013). They count the number
of points at or within neighborhoods of other features
based on the information of inter-point distances to de-
rive spatial information (Gadow et al. 2012, Velázquez
et al. 2016).

Monte Carlo simulation was conducted for summary
statistics (g(r), K(r), and L̂(r)) to produce pseudo-
significance levels via repeated randomization. A signif-
icant departure from the null hypothesis of CSR was es-

timated by 200 Monte Carlo simulations and the highest
and lowest values of these simulations represent approx-
imately 95% upper and lower confidence limits of the
null model of CSR. Two hundred simulations were con-
sidered sufficient to generate envelopes for determining
whether the null model can be rejected or not (Velázquez
et al. 2016). The Ripley edge correction was utilized in
SPPA for this study and we conducted SPPA using the
“spatstat” package in R, which is a standard toolbox for
this subject area (Law et al. 2009).

3 Results and Discussion

With respect to the first hypothesis of this study, the
horizontal positional accuracy was analyzed for differ-
ent tree bole position measurement methods and GNSS
receiver types. For the Garmin receiver, occasionally it
provided a sub-meter accurate horizontal position, but
on average, horizontal position accuracy (as reported us-
ing RMSE) for representing the locations of trees was
10–12m (Table 1). The greatest positional error mea-
sured was 28m, and the coefficient of variation was 25–
40%. For the Suunto receiver, occasionally it provided
about 1m accurate horizontal positions, but on average,
horizontal position accuracy was 9–13m, which was con-
sistent with a previous study (Lee et al. 2020). The
greatest positional error was 82m, and the coefficient
of variation was 40–90%, suggesting much more vari-
ation in determined positions than when the Garmin
device was used. For the Trimble receiver, a few sub-
meter accurate horizontal positions were determined,
but on average, horizontal position accuracy was 5–
8m. The greatest measured positional error was 19m,
and the coefficient of variation was 30–60%. Therefore,
as expected, the mapping-grade receiver provided the
most accurate estimates of tree positions with the low-
est amount of variation compared the recreation-grade
receivers. These findings were statistically significant,
with p-values of less than 0.05 (Figure 2).

Regarding measurement methods that might improve
horizontal positional accuracy, it was expected that de-
termining a tree bole position using multiple cardinal
positions would provide better horizontal positional ac-
curacy regardless of GNSS receiver used. Interestingly,
however, the highest and lowest mean RMSE values were
observed when a tree bole position was determined at a
single cardinal point regardless of GNSS receiver (Fig-
ure 3). When tree bole positions were determined from
the East or North sides of a tree, the lowest positional
error was observed. Otherwise, the highest positional er-
rors were observed when tree boles were located South
or West of each measurement point. Regarding the po-
sitional errors obtained by the average from all cardinal
points and the average from two cardinal points (North
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Figure 2: Boxplots for horizontal positional accuracy (RMSE) by methods and GNSS receiver types (A mean center
of observed points at every cardinal point: A; A mean center of observed points at two cardinal points: B; A mean
center of observed points at each cardinal point: C). Different letters indicate significant differences between the
groups (p-value <0.05).

Table 1: A summary of raw data observations for different GNSS receiver types and measurement methods.

Device / metrics Measurement Methods

Garmin Oregon 700 All Two NS EW Single N S E W

Mean RMSE (m) 11.31 11.17 11.11 11.22 10.77 9.61 11.81 9.24 12.40
Min. RMSE (m) 5.92 3.11 5.47 3.11 0.97 1.71 0.97 1.41 2.74
Max. RMSE (m) 19.84 21.55 18.52 21.55 27.63 20.16 24.85 20.69 27.63
SD of RMSE (m) 2.93 3.44 3.04 3.81 4.54 3.97 4.26 3.89 5.16
n 97 194 97 97 388 97 97 97 97

Suunto watch GPS All Two NS EW Single N S E W

Mean RMSE (m) 12.34 11.91 12.03 11.79 11.22 9.04 13.52 10.97 11.34
Min. RMSE (m) 5.96 3.15 3.27 3.15 1.06 1.06 3.67 1.34 2.53
Max. RMSE (m) 44.04 58.85 42.08 58.85 82.31 40.79 59.20 82.31 30.95
SD of RMSE (m) 5.12 6.05 4.99 6.98 7.26 5.27 6.90 10.02 5.13
n 97 194 97 97 388 97 97 97 97

Trimble Juno T41 All Two NS EW Single N S E W

Mean RMSE (m) 6.87 6.71 6.41 7.00 6.36 5.21 6.95 5.22 8.04
Min. RMSE (m) 3.14 1.95 1.95 2.02 0.91 1.12 0.91 0.92 2.97
Max. RMSE (m) 12.77 16.11 14.80 16.11 18.86 18.86 17.59 14.89 17.25
SD of RMSE (m) 2.00 2.51 2.67 2.31 3.29 3.02 3.47 2.82 2.97
n 97 194 97 97 388 97 97 97 97

mailto://taeyoon.lee@uga.edu
http://mcfns.com


Lee et al. (2022)/Math.Comput. For.Nat.-Res. Sci. Vol. 14, Issue 1, pp. 15–31/http://mcfns.com 23

Figure 3: Boxplots for horizontal positional accuracy (RMSE) of observed points using different methods within each
GNSS receiver type (A mean center of observed points every cardinal points: all; a mean center of observed points
at the North and South: NS; a mean center of observed points at the East and West: EW; a mean center of observed
points at the North: N; a mean center of observed points at the South: S; a mean center of observed points at the
East: E; a mean center of observed points at the West: W; Garmin Oregon 700: A; Suunto GPS watch: B; Trimble
Juno T41: C). Different letters indicate significant differences between the groups (p-value <0.05).

and South; East and West), there were no significant
differences (Figure 3).

These results suggested that determining a tree bole
location using multiple cardinal positions might not be
helpful and does not influence horizontal positional ac-
curacy in a forested area. Various factors related to mea-
surement methods have been tested in prior studies to
improve the performance of GNSS receivers. For exam-
ple, Weaver et al. (2015) investigated the effect of hold-
ing position for GNSS receivers on horizontal position
accuracy and confirmed holding a GNSS receiver verti-
cally provided improved horizontal positional accuracy
compared to holding it at an angle or horizontally. Fur-
ther, Bettinger and Merry (2012a) suggested that the
number of fixes to determine the location of tree did
not influence horizontal position accuracy, since random
trends were observed in different forest types. However,
in one case the observation time was considered the most
important factor for improving horizontal positional ac-
curacy of GNSS receivers (Næsset & Gjevestad 2008).
While our short data collection period may have affected
horizontal positional accuracy, the method for collecting
positional information in this study represented well the
way it is applied in a real-world, practical setting. All
this aside, it is interesting to note that due to the difficul-
ties encountered in determining accurate tree positions
in a forested environment, it has been suggested that
more traditional survey techniques be employed to bet-
ter represent the true location of individual trees (Edson
& Wing 2012). Alternatively, if time and cost were not
an issue, the use of survey-grade GNSS receivers or RTK
(and other) real-time augmentation methods may better

accomplish the mission than using basic mapping-grade
or recreation-grade GNSS receivers.

When evaluating the mean center coordinates of the
average position determined for each tree using the
RSEM, the highest and lowest positional error was also
observed when the tree bole locations were determined
at single cardinal point (Table 2). The mean center of
tree locations determined by each GNSS receiver was lo-
cated to the South of true tree locations, where the dif-
ference from the actual tree bole location had a negative
northing regardless of measurement method. Further,
most of the mean center X coordinates were biased to
the West of the actual tree locations, where the differ-
ence from the actual tree location had a negative easting
regardless of measurement method and GNSS receiver
type. The bias in determined positions was also ob-
served in a previous study using a GPS watch and map-
ping grade receiver, where theX coordinates were biased
to the West of true tree locations regardless of GNSS
receiver-grade, season, and forest type, but the reason
was not confirmed (Lee et al. 2020). The RSEM values
provide a different picture of the horizontal accuracy of
the GNSS devices since they somewhat correct for direc-
tional error (deviations on two sides of true tree bole po-
sitions provide a better estimated representation of the
location of trees) while RMSE values ignore directional
issues and simply report distance deviation regardless of
the direction. For the Garmin receiver, RSEM values
ranged from 5–13m, error was often to the South and
West of true tree bole positions, the angle of rotation of
the estimated ellipse was East-Southeast, and the area
of the estimated ellipse was rather large (Table 2). For
the Suunto receiver, RSEM values ranged from 5–11m,
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Table 2: A summary of the elliptical parameters estimated from positions determined by different GPS equipment
using different measurement methods (RSEM = root squared error of the mean; Mean X coordinate = the mean of
difference between observed X coordinates and control X coordinate; Mean Y coordinate = the mean of difference
between observed Y coordinates and control Y coordinate; Ia = the anisotropic ratio).

Device / metrics Measurement Methods

Garmin Oregon 700 All Two NS EW Single N S E W

Mean RSEM (m) 7.54 7.54 7.39 7.70 7.54 6.21 9.39 5.62 10.34
Mean X coordinate (m) -1.45 -1.45 -1.26 -1.65 -1.45 -3.38 0.86 0.82 -4.11
Mean Y coordinate (m) -7.40 -7.40 -7.28 -7.53 -7.40 -5.21 -9.35 -5.56 -9.49
Angle of rotation (°) 108.57 104.20 106.23 100.65 101.42 100.17 113.60 109.84 59.46
Ia (%) 37.38 30.80 39.50 22.19 21.19 32.10 26.11 33.30 14.27
Area of ellipse (m2) 110.32 153.92 144.15 160.69 242.97 202.78 207.68 199.62 226.92

Suunto watch GPS All Two NS EW Single N S E W

Mean RSEM (m) 7.85 7.85 7.78 7.94 7.85 5.00 11.00 6.97 9.48
Mean X coordinate (m) -0.09 -0.09 0.17 -0.35 -0.09 -1.62 1.96 1.84 -2.54
Mean Y coordinate (m) -7.85 -7.85 -7.78 -7.93 -7.85 -4.74 -10.83 -6.73 -9.13
Angle of rotation (°) 95.92 88.05 95.16 66.30 87.20 107.97 83.87 24.27 61.67
Ia (%) 32.30 24.37 42.00 13.39 13.10 37.31 40.28 13.57 16.17
Area of ellipse (m2) 127.59 198.80 160.41 225.73 362.79 237.93 300.93 532.02 200.14

Trimble Juno T41 All Two NS EW Single N S E W

Mean RSEM (m) 4.55 4.55 4.01 5.09 4.55 3.22 5.21 3.52 6.89
Mean X coordinate (m) -0.66 -0.66 -0.73 -0.59 -0.66 -1.78 0.32 0.62 -1.79
Mean Y coordinate (m) -4.50 -4.50 -3.94 -5.06 -4.50 -2.68 -5.20 -3.47 -6.65
Angle of rotation (°) 121.77 134.35 128.96 138.14 148.90 154.33 121.33 168.06 114.41
Ia (%) 21.19 16.71 22.81 9.11 10.81 16.18 24.07 19.58 5.73
Area of ellipse (m2) 27.78 47.36 50.35 42.07 95.24 79.60 100.10 69.78 81.24

error was often to the South and West of true tree bole
positions, the angle of rotation of the estimated ellipse
was Northeast-East, and the area of the estimated el-
lipse was generally larger than that estimated for the
Garmin device. For the Trimble receiver, RSEM val-
ues ranged from 3–7m, error was often to the South and
West of true tree bole positions, the angle of rotation
of the estimated ellipse was Southeast, and the area of
the estimated ellipse was smaller than that estimated
for the other devices. The anisotropic ratios for tree lo-
cations determined by the Trimble receiver were lower,
indicating it generally had lower bias in direction than
the other two devices. In concert with the previously re-
ported results, the mapping-grade receiver provided the
most accurate estimates of tree bole positions with the
lowest amount of variation.

Regarding the second hypothesis of this study, the
ANN analysis of the point pattern of true tree bole lo-
cations (control point pattern) suggested it had a dis-
persed pattern (regular pattern), and that it was sig-

nificantly different from the CSR (Table 3). The ANN
ratio for the control point pattern indicated that it had
longer average distance to the nearest tree compared to
the expected average distance under CSR (ANN ratio =
1.49). Statistically, observed point patterns from other
methods were internally similar when the tree bole loca-
tions were measured at two cardinal points (North and
South) using the Garmin receiver and when the tree bole
locations were determined at two sides (East and West),
and South and East using Suunto GPS watch (Table 3).
Therefore, we assumed these point patterns might be
meaningful to proceed further with spatial point pattern
analyses such as g(r) function, K(r) function and L̂(r)
function. In addition, we investigated observed point
patterns to decide, which point patterns should proceed
with further analyses (Figure 4, 5, and 6).

However, most observed patterns seemed to not re-
semble the control point pattern; thus, we decided to
choose the point patterns measured by method “All”,
which represented lines of trees regardless of GNSS re-
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Figure 4: The point patterns observed by Garmin receiver depending on measurement method (a: true location, b:
North, c: South, d: East, e: West, f : North and South, g: East and West, h: All).

Figure 5: The point patterns observed by the Suunto GPS watch depending on measurement method (a: true
location, b: North, c: South, d: East, e: West, f : North and South, g: East and West, h: All).
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Figure 6: The point patterns observed by the Trimble GNSS receiver depending on measurement method (a: true
location, b: North, c: South, d: East, e: West, f : North and South, g: East and West, h: All).

ceiver. Lastly, three observed point patterns by GNSS
receiver were selected based on mean RMSE from the
smallest value. Therefore, we analyzed point patterns
measured by method “NS”, “S”, and “N” for the Garmin
receiver. Regarding the Suunto GPS watch, point pat-
terns observed by method “N”, “E”, and “W” were se-
lected. The point patterns from the Trimble receiver
included points patterns determined by method “NS”,
“N”, and “E”. In sum, a total of 15-point patterns in-
cluding the control point pattern were selected for fur-
ther spatial analysis such as g(r) function, K(r) function
and L̂(r) function.

The control point pattern represented a statistically
significant dispersed pattern (regular pattern) at dis-
tances of 3 to 7m, which is consistent with the actual
average tree spacing of 6.12m (Figure 7, 8, 9 a). At
a larger distance scale, there was no evidence of either
aggregation or regularity when K(r) and L̂(r) functions
were applied (Figure 7, 8 a). Regarding the observed
point pattern from using GNSS receivers and methods,
the K(r) lines did not represent significant deviation
from the expected line, which indicates the point pat-
terns follow complete randomness (Figure 7). However,
statistically significant clustered patterns were observed
at the wider distance range regardless of GNSS receivers
and methods except the point pattern observed by the
Garmin receiver using method “E” (Figure 7). The L̂(r)
function also detected clustered patterns at larger dis-

tance range, but the dispersed pattern (regular pattern)
was not observed in any observed point patterns (Fig-
ure 8). The L̂(r) function suggested that point pat-
terns observed with the Garmin and Trimble receivers
using measurement method “E” followed the complete
randomness across distance ranges (Figure 8 j and o).
Unlike K(r) and L̂(r) function, the g(r) function de-
tected some evidence of a clustered pattern at certain
distances from the control point pattern in addition to
the evidence of regularity at the distance scale of around
5m (Figure 9 a). For example, the suggestive evidence of
aggregation was confirmed at around 7, 9, 15, and 20m
of distance scale. Regarding the observed point patterns,
a significant dispersed pattern (regular pattern) was not
detected. Rather, g(r) function lines for observed point
patterns showed almost no deviation from the expected
values indicating a random distribution (Figure 9). In
addition, a statistically significant clumpy distribution
was observed at various distances regardless of GNSS
receiver and method employed. We had assumed that
direction of error would be similar with data collected
by each device during a short period of time, but this
was not necessarily the case (Figure 10).

In sum, each of the basic mapping-grade and
recreation-grade GNSS receivers we tested provided a
pattern of determined tree bole positions that did not
reflect the original pattern of the trees in the seed or-
chard. In fact, the determined tree positions provided
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Figure 7: Ripley’s K functions (K(r)) for point patterns observed by different GNSS receivers and measurement
methods (a: True tree location; b, c, d, e: Garmin receiver; f, g, h, i, j, k : Suunto GPS watch; l, m, n, o: Trimble
receiver; b, f, l: method “All”; c,m: method “NS”; g: method “EW”; d, h, n: method “N”; i: method “S”; e, j, o:
method “E”; k: method “W”). Horizontal axes are the distances r between pairs of individuals. Heavy lines show
the observed statistic, and the horizontal red dotted lines show the value of K(r) expected from a Poisson process.
Gray lines are approximate 95% confidence envelopes for the hypothesis of complete spatial randomness, obtained
from 200 independent randomizations of the locations of the trees.

an ANN ratio that was close to 1, reflecting a tendency
toward the representation of a random pattern of trees
rather than a regular arrangement of trees. Based on
the ANN ratio, the pattern of determined tree positions
from the Garmin and Suunto devices probably better
reflected the original pattern of the tree boles in the
seed orchard, yet still did not represent the pattern ad-
equately when applying other summary statistics. Fur-
ther research in this mission to use GNSS receivers to
denote the location of trees in a forested setting seems
necessary. If one chooses to accept the mission, it might
involve determining whether the use of a RTK GNSS
system or other augmentation methods such as DGPS
and SLAM can overcome the limitations associated with
unaugmented GNSS position fixes collected with au-
tonomous recreation-grade GNSS receivers can develop
relatively accurate databases of individual tree bole lo-
cations within forests that also maintain the fidelity of
the actual tree pattern.

4 Conclusions

In this study, various methods to determine tree bole
locations using GNSS receivers were investigated us-
ing horizontal positions (point locations) determined by
GNSS receivers. In addition, various summary statistics

were applied to assess whether the pattern of the control
points and the observed points (the GNSS-determined
positions) was indeed regular at a distance range, which
is equivalent to the average tree spacing (around 6 m)
in a pine seed orchard. Given that the range of horizon-
tal position error was greater than the spacing between
the real trees, it was not unexpected that the tree bole
locations determined by the three GNSS receivers were
not representative of the actual regular pattern of tree
boles. The results of the spatial point pattern analysis
only indicated a significant regular pattern of trees from
the very careful field measurement of the control points.
These results and ranges of horizontal position error
are relevant to other efforts, which use non-augmented
GNSS technology in forested areas. These results sug-
gest that even acceptable ranges of horizontal positional
error from unaugmented, basic GNSS technology can be
associated with a self-destruction of the actual spatial
point pattern of trees in a forested setting.
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Figure 8: The normalized L(r) functions (L̂ (r)) for point patterns observed by different GNSS receivers and mea-
surement methods (a: True tree location; b, c, d, e: Garmin receiver; f, g, h, i, j, k : Suunto GPS watch; l, m, n,
o: Trimble receiver; b, f, l: method “All”; c,m: method “NS”; g: method “EW”; d, h, n: method “N”; i: method
“S”; e, j, o: method “E”; k: method “W”). Horizontal axes are the distances r between pairs of individuals. Heavy
lines show the observed statistic, and the horizontal red dotted lines show the value of L̂ (r) expected from a Poisson
process. Gray lines are approximate 95% confidence envelopes for the hypothesis of complete spatial randomness,
obtained from 200 simulations.

Figure 9: Pair correlation (g(r) function) for point patterns observed by different GNSS receivers and measurement
methods (a: True tree location; b, c, d, e: Garmin receiver; f, g, h, i, j, k : Suunto GPS watch; l, m, n, o: Trimble
receiver; b, f, l: method “All”; c,m: method “NS”; g: method “EW”; d, h, n: method “N”; i: method “S”; e, j, o:
method “E”; k: method “W”). Horizontal axes are the distances r between pairs of individuals. Heavy lines show
the observed statistic, and the horizontal red dotted lines show the pair correlation function expected from a Poisson
process. Gray lines are 95% Monte Carlo simulation envelopes obtained from 200 simulations.
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Table 3: A summary of average nearest neighbor (ANN)
analysis for different GNSS receivers and measurement
methods.

True tree location 1.49 9.82 <0.01

Measur. method ANN ratio z-score p-value

Garmin Oregon 700
All 1.09 1.69 0.09
NS 1.16 3.01 <0.01
EW 1.10 1.79 0.07
N 1.06 1.14 0.25
S 1.03 0.53 0.59
E 1.04 0.81 0.42
W 1.12 2.28 0.02

Suunto GPS Watch
All 1.05 0.98 0.33
NS 1.02 0.45 0.65
EW 1.20 3.80 <0.01
N 1.01 0.26 0.79
S 1.16 2.93 <0.01
E 1.20 3.81 <0.01
W 1.12 2.19 0.03

Trimble Juno T41
All 1.03 0.5 0.62
NS 0.98 -0.32 0.75
EW 1.08 1.55 0.12
N 1.03 0.53 0.60
S 0.95 -0.92 0.36
E 1.05 0.97 0.33
W 0.90 -1.96 0.05

Figure 10: The direction of error for data collected by
Trimble receiver using “All” method within short period
of time (a: collected on February 22nd, 2021; b: collected
on March 6th, 2021).
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