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Abstract. Ranked Set Sampling (RSS) is a sampling strategy which is advantageous when measurement
of sampling units is very difficult but when small sets of units can be ranked according to other methods
that do not require actual measurements. The units corresponding to each rank are used in RSS and RSS
performs better than simple random sampling (SRS) when estimating the population mean of forestry or
environmental parameters (say, below ground biomass). A new RSS procedure based on alternate order
statistics for estimating the population mean (ARSS) is suggested in this paper. ARSS measures only
the first, third, fifth and so on units so that the information on remaining order statistics is represented
by their respective neighboring order statistics. The bias correction term in the proposed estimator is
included and calculated for some skewed and symmetric (both mound and U shaped) distributions. The
estimators under ARSS are then compared to the estimators based on balanced RSS and Neyman’s optimal
unbalanced RSS allocations. Based on the computed Relative Precisions (RPs), estimators based on ARSS
are recommended for even set sizes of skewed distributions and odd set sizes of mound shaped symmetric
distributions. RPs of these distributions are uniformly better than the other two methods (balanced and
Neyman’s RSS). To demonstrate the performance of the different estimators, an example from forestry
that estimates total biomass of three tree species is presented. The proposed method is efficient in forestry
and environmental applications.

Keywords: above ground biomass, alternate ranked set sampling, distributions, ranked set sam-
pling, relative precision, unbiasedness

1 Introduction

In probabilistic sampling, there is a wide variety of
methods available including simple random sampling
(SRS), systematic sampling, variable probability sam-
pling, and multistage/multiphase designs utilizing aux-
iliary information from aerial photography, satellite im-
agery, or other sources (Kershaw et al., 2016; Yang et
al., 2019). The recommended sampling method often
depends upon the situation. For example, point sam-
pling for large-scale timber surveys, distance sampling
for capturing animal abundance, probability proportion

to prediction sampling (3P sampling) for stand-level in-
ventory, and sampling sparse populations using auxiliary
variables. Two recent developments within environmen-
tal sampling (Barnett, 1999; Chandra et al., 2020; Lat-
pate et al., 2021) are ranked set sampling (RSS) after
McIntyre (1952) and adaptive cluster sampling (ACS)
after Thompson (1990) and are being used in a vari-
ety of forestry and environmental applications (Acharya
et al., 2000; Chandra et al., 2011, 2019; Martin et al.,
1980). RSS was developed as a sampling method to
improve precision of the estimator of the mean in situa-
tions where the actual measurement of the attribute of
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interest is difficult and costly but the ranking of sam-
pling units by alternative methods that do not require
actual measurements is easy. In forest inventory and
research, such situations arise frequently in many field
surveys. For example, measurement of parameters like
canopy or wood volume of a tree or forest stand are
rather difficult; however, ranking trees or stands by vi-
sual inspection in comparison with the other neighboring
trees or stands in the same population is relatively easy.
There are a diverse number of applications in forestry
where this concept can improve sampling efficiency. For
example, intensity of insect pest attacks, biodiversity as-
sessment, assessment of above-or below-ground biomass,
pollution impacts, and so on. RSS has been applied in
several forestry field surveys. For example, Halls and
Dell (1966) used RSS for estimating weights of browse
and herbage in a pine-hardwood forest of East Texas.
Evans (1967) employed this approach in regeneration
surveys for long-leaf pine trees. Martin et al. (1980)
used RSS to estimate shrub phytomass in Appalachian
oak forests. Cobby et al. (1985) utilized RSS in the in-
vestigation of grass and grass-clover swards. Nelson et
al. (1987) used RSS to study nutrition status of Populus
deltoides plantations in the lower Mississippi River Val-
ley. Mode et al. (1999) used RSS to assess salmon pro-
duction across stream habitat areas in the Pacific North-
west and provided specific guidelines for situations where
RSS is appropriate and cost effective for ecological and
environmental field sampling. Kvam (2003) applied RSS
to binary water quality data with covariates. Tarr et
al. (2005) incorporated RSS in their attempt to map
accuracy of soil variables using soil electrical conduc-
tivity as a covariate. Platt et al. (1988) used RSS to
assess the population dynamics of old-growth long-leaf
pine (Pinus palustris). Wang et al. (2009) showed how
RSS can be used to increase efficiency and reduce costs
in fishery research. Chandra et al. (2019) suggested us-
ing RSS to estimate response of developmental programs
(including Joint Forest Management Programmes of
the Government of India). More recently, Kumar et
al. (2019) investigated the use of RSS in assessing bark
eating caterpillars, Indarbela quadrinotata (Walker), in
Populus deltoides plantations in Western Uttar Pradesh
and Uttarakhand, India.

1.1 Ranked Set Sampling, Estimators and Rel-
ative Precisions

The original version of McIntyre’s (1952) RSS ap-
proach was defined as follows: An SRS of size k is se-
lected from the population and the k sampling units are
ranked based on personal judgment or a concomitant
variable, X, without any actual measurement. Then
the unit with rank 1 is identified and selected for ac-
tual measurement and the remaining units of the initial

sample are discarded. Next, a second SRS of size k is
drawn, the units of this sample are ranked using the
same criteria as in sample one, and the unit with rank
2 is selected for measurement and the remaining units
are discarded. This process is continued until an SRS
of size k is selected and ranked and the unit with rank
k is selected for measurement (i.e., k SRSs of size k are
selected and the 1 to k ranked observations selected for
measurement). This whole process is referred to as a cy-
cle. The cycle is then repeated m times to get a ranked
set sample of size n = km. This procedure is termed
a balanced RSS or RSS with equal allocation. An il-
lustration of a ranked set sample of trees for estimating
any parameter through the concomitant variable height
using the set size two and three with number of cycles
as three and two is shown in Fig. 1.
Let Y((i:k)j),i = 1, 2. . . k; j = 1, 2. . . ,m, denote the

measured value of the characteristic under study of the
ith rank order in the jth cycle. All the mk measured
units out of total k2m selected units under balanced RSS
are demonstrated as:

Y(1:k)1 Y(2:k)1 · · · Y(k:k)1

Y(1:k)2 Y(2:k)2 · · · Y(k:k)2

· · · · · · · · · · · ·
Y(1:k)m Y(2:k)m · · · Y(k:k)m

Here it is noted that, for fixed i, the Y(i:k)j , j =
1, 2, . . . , m, are independently and identically dis-
tributed with mean and variance, µ(i:k) and σ2

(i:k) re-

spectively. The population values for µ(i:k) and σ2
(i:k)

are documented in literature for well-known distribu-
tions (for sufficiently large k, see (Harter and Balakrish-
nan, 1996; Hastings et al., 1947; Sarhan and Greenberg,
1962)). Suppose the population mean and variance is
denoted by µ and σ2 which are assumed to be unknown.
Under balanced RSS, an unbiased estimate of µ (McIn-
tyre, 1952) is the simple average of all measurements:

Y (k)bal =
1

km

k∑
i=1

m∑
j=1

Y(i:k)j

where, the subscript ‘bal’ represents a balanced RSS.
The variance of Y (k)bal is:

V ar
(
Y (k)bal

)
=

1

k2m2

k∑
i=1

m∑
j=1

V ar
(
Y(i:k)j

)
=

1

k2m2

k∑
i=1

m∑
j=1

σ2
(i:k)

or

V ar
(
Y (k)bal

)
=

1

k2m

k∑
i=1

σ2
(i:k)

mailto://nautiyal.raman@gmail.com
http://mcfns.com


Nautiyal et al. (2021)/Math.Comput. For.Nat.-Res. Sci. Vol. 13, Issue 2, pp. 14–26/http://mcfns.com 16

(a) (b)

Cycle I

Cycle II

Cycle III

Cycle I

Cycle II

Figure 1: Illustration of a balanced Ranked Set Sample (RSS) for selection of trees with (a) k = 2 and m = 3, and
(b) k = 3 and m = 2. (arrows mark trees selected for measurement, based on rank of height)

In an unbalanced RSS or RSS with unequal allocation,
not all rank order sample units are measured an equal
number of times. Suppose mi ≥ 1 measurements are
made corresponding to the ith rank, i = 1, 2, . . . , k
giving a total of n =

∑k
i=1 mi actual measurements for

the RSS sample. The unbalanced RSS is displayed as:

Y(1:k)1 Y(2:k)1 · · · Y(k:k)1

Y(1:k)2 Y(2:k)2 · · · Y(k:k)2

· · · · · · · · · · · ·
Y(1:k)m1

Y(2:k)m2
· · · Y(k:k)mk

where, Y(i:k)j , denotes the measured unit of the

ith ordered sample unit during the jth cycle
(i = 1, 2, . . . , k; j = 1, 2, . . . , mi).

In unbalanced RSS, the unbiased estimator of µ is:

Y (k)ubal =
1

k

k∑
i=1

Ti

mi

where, Ti =
∑mi

j=1 Y(i:k)j , and the subscript ‘ubal’ repre-

sents an unbalanced RSS. The variance of Y (k)ubal is:

V ar
(
Y (k)ubal

)
=

1

k2

k∑
i=1

mi∑
j=1

V ar
(
Y(i:k)j

)
m2

i

=
1

k2

k∑
i=1

mi∑
j=1

σ2
(i:k)

m2
i

or

V ar
(
Y (k)ubal

)
=

1

k2

k∑
i=1

σ2
(i:k)

mi
(1)

The optimal allocation for RSS is like Neyman’s opti-
mal allocation (Thompson, 2012) in stratified random
sampling, and is given by:

mi =
nσ(i:k)

k∑
i=1

σ(i:k)

(2)

The corresponding variance is obtained by using (2) in
(1) becomes:

V ar
(
Y (k)opt

)
=

1

nk2

(
k∑

i=1

σ(i:k)

)2

=
σ2

n

where, (1/k )
∑k

i=1 σ(i:k) denotes the average of the
within-rank standard deviations.

1.2 Broader Comparison of RSS with 3P Sam-
pling
In forest surveys we often come across situations where
actual measurement of sampling units is very difficult
but the ranking of the units or measuring auxiliary vari-
able is very easy. In probability proportional to predic-
tion (3P) sampling (Grosenbaugh, 1963, 1965), one mea-
sures or predicts (visually or through some other simple
tool) the auxiliary variable which is strongly positively
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correlated with the variable of interest. The higher the
degree of correlation, the more efficient the 3P sampling
technique becomes. After identification of the auxiliary
variable using a preliminary/pilot survey or prior knowl-
edge of the forest population, 3P sampling proceeds in
two phases. In the first phase, a set of sampling units
is selected from the population using conventional sam-
pling like SRS or systematic sampling. In the second
phase, a 3P subsample of the first phase sample the
sampling units is selected with unequal probability of
selection as follows:

First, identify the range
[
x(l), x(u)

]
of values of the

auxiliary variable in the entire population very carefully
because a sampling unit encountered with an auxiliary
value outside the range n will be selected with probabil-
ity of 1 and can lead to inefficiencies and potential biases
if the number of such units is large. Then, measure or
estimate the auxiliary value of the sampling unit selected
in the first phase, suppose it is x(m). A random value

x(r) is then selected from
[
x(l), x(u)

]
. If, for a sampling

unit, x(m) ≥ x(r), the unit is selected for the final sample
for estimation purposes. In this case the more difficult
and costly to measure variable of interest is measured on
that sampling unit. If x(m) < x(r), the sampling unit is
discarded and does not become part of the second-phase
sample and the surveyor simply moves on to the next
sampling unit in the first-phase sample. This rule sim-
ply makes probability of inclusion proportional to pre-
dicted value and forces some of largest sampling units
to be measured.

In a general comparison between 3P sampling and
RSS, it is observed that 3P sampling involves measur-
ing or estimating the auxiliary variable quantitatively.
The quantitative values of the auxiliary variable are re-
quired to determine whether sampling units selected in
the first phase are finally selected for actual measure-
ment or not in the second phase. Measurement of auxil-
iary variables requires substantial costs even though the
costing is cheaper. While in the case of RSS, instead
of giving quantitative values, only comparative ranks
of those units selected in the first phase are required.
This process of RSS reduces costs, and the benefits of
(i) stratified random sampling is obtained in which final
sample is comprised of units from each rank order, sim-
ilar to (ii) systematic ordered list sampling. Secondly,
an auxiliary variable which is strongly positively corre-
lated with the study variable can be difficult to obtain
in some cases. In comparison, RSS does not identify the
nature of auxiliary variable. Instead, it only ranks the
sampling units by visual inspection. Both 3P sampling
and RSS do not require two or more visits to the field.
Simultaneously, with the ranking process, one immedi-

ately decides whether the selected unit is to be measured
or not. RSS reduces the sample size required for actual
measurement to a larger extent than 3P without com-
promising the efficiency of the estimator. In balanced
RSS, out of the mk2 sampling units, one measures only
mk sampling units. This is one of the important re-
quirements for efficient forest surveys (Iles, 2003, 2012;
Kershaw et al., 2016). With this in mind, the use of RSS
is recommended as a potentially beneficial sample design
for forest related studies. The proposed method of alter-
nate ranked set sampling (ARSS), described in Section
2, further improves the precision over balanced and un-
balanced RSS with an additional reduction in sample
sizes to half in comparison of balanced RSS.

2 ALTERNATE RANKED SET SAM-
PLING

The Alternate RSS (ARSS) procedure is proposed to
improve efficiency of forestry field surveys that require
smaller sample sizes of actual measurements. In ARSS,
we measure only the alternate order statistic (i.e., the
first, third, fifth and so on) so that the information for
the remaining ordered sample units are represented by
their respective neighboring ordered sample units. For
example, the information for the second ordered sam-
pling unit is represented by its neighboring first and
third order sample units and so forth. The ARSS pro-
cedure is a method to reduce sample size of actual mea-
surements to half without compromising on the precision
of the estimators. The proposed method of ARSS is ex-
plained as follows:

Select a simple random sample of size k from the popu-
lation, rank them as described above for RSS and choose
the 1st ordered sample unit for actual measurement. Se-
lect another random sample of size k, rank them as be-
fore and select the 3rd ordered sample unit for actual
measurement. This process is continued until the kth

(when k is odd) or (k − 1)
th

(when k is even) ordered
sample units are selected for actual measurements.

It should be noted that there are M ordered sample
units for actual measurements, where:

M =

 k
2 , if k is even

k+1
2 , if k is odd


and represents the median of the set size taken for the
study. This whole process is repeated r times to get the
balanced RSS of size n = rM . If r = 2, M becomes set
size for even k, as taken for the original RSS approach.
Under the balanced ARSS (or ARSS with equal allo-

cation) model, an estimator of µ is proposed to be:
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Y (k)abal =
1

rM

M∑
i=1

r∑
j=1

Y(2i−1:k)j + Ck

The subscript ‘abal’ denotes ARSS with balanced RSS
and Ck is a correction factor to be determined depend-
ing upon the set size k. The estimator Y (k)abal will be
unbiased if Ck is chosen to be:

Ck = µ− 1

M

M∑
i=1

µ(2i−1:k) (3)

The value of Ck may or may not be known in advance.
If the nature of the distribution under study is known
in advance, the corresponding Ck is also known and is
calculated using Eq. (3). In section 3, we first attempt
ARSS with a few known distributions (Section 3.1) to
calculate the values of Ck. However, in cases where the
nature of the distribution is not known in advance, first,
Ck must be estimated followed by estimating the popula-
tion mean and corresponding Mean Square Error (MSE).
This case is demonstrated in Section 3.2 using a dataset
from a sample survey in a forest as an example.

The MSE of Y (k)abal is given by:

MSE
(
Y (k)abal

)
=

1

a2M2

M∑
i=1

a∑
j=1

V ar
(
Y(2i−1:k)j

)
+ b2

=
1

aM2

M∑
i=1

σ2
(2i−1:k) + b2

where:
b = Bias

(
Y (k)abal

)
= µ−

(
(1/M )

∑M
i=1 µ(i:k) + Ck

)
.

To compare the performances of the three methods
(balanced RSS, ARSS and Neyman’s optimum) the fol-
lowing three relative precision (RP) values with respect
to SRS with n = aM measurements are computed:

RP1 =
V ar

(
ȲSRS

)
V ar

(
Ȳ(k)bal

) =
σ2

1
k

k∑
i=1

σ2
(i:k)

=
σ2

σ2
(4)

RP2 =
V ar

(
ȲSRS

)
V ar

(
Ȳ(k)abal

) =
σ2

1
M

k∑
i=1

σ2
(2i−1:k) + aMb2

(5)

RP3 =
V ar

(
ȲSRS

)
V ar

(
Ȳ(k)opt

) =
σ2

σ̄2
(6)

where σ2 = (1/k )
∑k

i=1 σ
2
(i:k) is the average of the

within-rank variances.

Additionally, the RP of ARSS compared to balanced
RSS (RP4) is derived theoretically. For this purpose, we
equate n = mk = aM which gives a = (mk/M). For
even k, a = 2m. The derived value of RP4 is then given
by:

RP4 =
MSE

(
Ȳ(k)bal

)
V ar

(
Ȳ(k)abal

)
=

M

k

k∑
i=1

σ2
(i:k)(

M∑
i=1

σ2
(2i−1:k) +mkMb2

) (7)

Similarly, RP of ARSS with respect to Neyman’s opti-
mum (RP5) is given by:

RP5 =
V ar

(
Y (k)opt

)
MSE

(
Y (k)abal

)
=

Mσ2(
M∑
i=1

σ2
(2i−1:k) + aM2b2

) (8)

It is known that the RP of Neyman’s allocation for
positively skewed distributions is substantial over other
allocation models which are based upon each order
statistics. Some available allocation models for skewed
distributions are balanced RSS (McIntyre, 1952), the ‘t’
and ‘(s, t)’ models (Kaur et al., 1997), systematic al-
location model (Tiwari and Chandra, 2011) and simple
allocation models (Bhoj and Chandra, 2019; Chandra et
al., 2018). However, when the estimator is based on sym-
metric distributions, the precision of Neyman’s model is
marginal (Kaur et al., 2000). Kaur et al. (2000) proposed
an optimum model for symmetric distributions which
measure either only mid or extreme rank orders. They
give the optimum model for both Mound shaped and
U-shaped symmetric distributions. The Mound shaped
distributions are those for which σ2

(i:k) is increasing in i

for 1 ≤ i ≤ M and σ2
(i:k) is decreasing in i for M ≤ i ≤ k.

U shaped distributions are those for which σ2
(i:k) is de-

creasing in i for 1 ≤ i ≤ M and σ2
(i:k) is increasing in

i for M ≤ i ≤ k. Kaur et al. (2000) ignored rank or-
ders with large variances and measured only rank orders
having the smallest variances. To overcome this diffi-
culty, Chandra et al. (2015) proposed new systematic
allocation models for symmetric distributions.
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3 NUMERICAL COMPARISONS OF
RSS METHODS

3.1 Known Probability Distributions In the first
case, it is assumed that the parent distribution from
where the samples are drawn is known in advance. The
performance of the proposed ARSS model with respect
to SRS, balanced RSS and Neyman’s optimum alloca-
tion model in terms of RPs was evaluated for some
skewed and symmetric distributions. In skewed distri-
butions, standard Lognormal [LN (0, 1)], Gamma [G(2),
G(1), G(0.5)], Pareto [P(5), P(4.5), P(3)], Weibull
[W(0.5)], Half Logistic and Half Normal distributions
were used. For symmetric distributions, Standard Uni-
form, Standard Normal, Standard Special and Asymp-
totic Normal were used for the purpose of comparisons.
The asymptotic normal distribution is the asymptotic
approximation of a normal distribution. In skewed dis-
tributions, both, highly skewed [LN(0,1), G(0.5), P(3),
P(4.5), P(5), W(0.5)] and moderately skewed [G(2),
G(1)] are considered. The values of the mean and
variances of order statistics for these distributions were
taken from Harter and Balakrishnan (1996) and Sarhan
and Greenberg (1962). For symmetric distributions,
both Mound shaped [standard uniform] and U shaped
[standard normal, standard special and asymptotic nor-
mal] distributions were considered to see the perfor-
mance of different methods proposed in this paper. For
the symmetric distributions, the values of the mean and
variances of order statistics were obtained from Hastings
et al. (1947). The values for Ck using Eq. (3) for each
of the distributions were computed for k = 2, 3, . . . , 10
and are presented in Table 1.

From Table 1, it is observed that, for even k, the values
of Ck for skewed distributions decrease with increasing
k. This means for infinitely large k; the correction factor
will be close to zero and the proposed estimator Y (k)abal

is close to the original estimator of McIntyre (1952). For
odd values of k, the values of Ck are negative and tends
to zero, in general. For symmetric distributions, Ck was
zero for each odd value of k. As with skewed distribu-
tions, the values of Ck decreased with increasing k for
even k. The values of the three RPs (RP1, RP2, and
RP3) for skewed and symmetric distributions are pre-
sented in Table 2 and Table 3, respectively.

From Table 2, it is observed that for skewed distri-
butions, the performance of proposed model is better
than the balanced RSS as well as the Neyman’s opti-
mum allocation model for even set sizes. As is well
known, RP1 and RP3 increase with increasing k. In
the case of the proposed ARSS, it is observed that for

moderately skewed distributions, RP2 increased as k in-
creased. However, for highly skewed distributions, RP2

initially decreased with increasing values of k and then
increased. For odd set sizes of skewed distribution, the
proposed model does not perform better.
For symmetric distributions (Table 3), ARSS per-

formed better with the odd set sizes for the mound
shaped symmetric distributions than the other proce-
dures; however, for even set sizes the RP is equal to the
balanced RSS scheme. For U shaped distributions, the
proposed method does not work. Therefore, based on
these results, the proposed model may be considered as
a good model for even set sizes of skewed distributions
and odd set sizes of mound shaped symmetric distribu-
tions. Smaller set sizes are recommended when using
the proposed ARSS method.

3.2 Unknown Distributions In the situations when
the distribution under study is not known in advance,
it is not possible to obtain the values of Ck for estimat-
ing the population mean. In this section, we propose
a method to estimate Ck for different values of k. The
expression for Y (k)abal can be written as

Y (k)abal = S + Ck

where:

S = (1/aM )
∑M

i=1

∑a

j=1
Y(2i−1:k)j .

We also know that Y (k)abal is unbiased if

Ck = µ− 1

M

M∑
i=1

µ(2i−1:k)j

When the distribution is completely unknown, the esti-
mated value of Ck is:

Ĉk = T − 1

M

M∑
i=1

µ̂(2i−1:k)j

where µ̂(2i−1:k)j is the estimated value of (2i− 1)
th

or-
der statistic (i = 1, 2, . . . , k)based on the ordered ob-
servations taken before the actual measurement. This
is explained by one real example of a survey related to
forestry, given in the next subsection.

3.2.1 Performance Comparison for Real Data A
survey was carried out with the purpose of estimating
the total biomass (tonnes per 0.1 hectare) of even-aged
chir pine (Pinus roxburghii), deodar (Cedrus deodara)
and kail (Pinus wallichiana) trees in a forest of the
Western Himalayas of India. The Above Ground
Biomass (AGB) on 208 selected trees from the above
forest having different altitudinal ranges was measured.
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Table 1: Values of the bias correction factor Ck (Eq. 3) with b=0 for some skewed and symmetric distributions for
k =2(1)10.

Distribution1 µ σ2
Set size (k)

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Skewed Distributions
LN(0,1) 1.649 4.671 0.858 -0.198 0.616 -0.221 0.496 -0.218 0.422 -0.208 0.371
G(2) 2.000 2.000 0.750 -0.088 0.493 -0.094 0.374 -0.090 0.304 -0.084 0.258
G(1) 1.000 1.000 0.500 -0.083 0.333 -0.089 0.256 -0.085 0.210 -0.079 0.179
G(0.5) 0.500 0.500 0.318 -0.074 0.220 -0.079 0.172 -0.075 0.143 -0.070 *2

P(5) 1.250 0.104 0.139 0.140 0.097 -0.033 0.077 -0.032 0.065 * *
P(4.5) 1.286 0.147 0.161 -0.035 0.113 -0.039 0.090 -0.038 0.076 * *
P(3) 1.500 0.750 0.300 -0.075 0.218 -0.084 0.178 -0.084 0.153 * *
W(0.5) 2.000 20.000 1.500 -0.472 1.139 -0.528 0.947 -0.520 0.822 -0.498 0.733
Half logistic 1.371 1.386 0.598 -0.095 0.386 -0.101 0.289 -0.097 0.232 -0.092 0.195
Half Normal 0.798 0.364 0.330 -0.033 0.211 -0.035 0.157 -0.033 0.126 -0.030 0.106
Symmetric Distributions
N(0, 1) 0.000 1.000 0.564 0.000 0.366 0.000 0.276 0.000 0.223 0.000 0.188
U(0,1) 0.000 1.000 0.577 0.000 0.346 0.000 0.247 0.000 0.193 0.000 0.158
Standard
Special

0.000 1.000 0.535 0.000 0.365 0.000 0.284 0.000 0.236 0.000 0.203

Asymptotic
Normal

0.000 1.000 0.431 0.000 0.294 0.000 0.227 0.000 0.187 0.000 0.159

1LN = Lognormal; G = Gamma; P=Pareto; W=Weibull; N=Normal; U=Uniform

2Some means and variances of order statistics in the literature were not found, these entries are denoted by *

AGB is easy to measure in a non-destructive way either
by the use of allometric equations or by using the well-
known Smalian/Huber/Newton formulae etc. For calcu-
lations, 208 trees were considered as the population (Ap-
pendix A) and AGB was taken as the concomitant vari-
able for the purpose of ranking. The population mean
and variance of this population is determined as 0.95632
and 0.91274 (tonnes per 0.1 ha), respectively. The small
set sizes k=4 and 8 were selected for the purpose and five
cycles were made. The selected order statistics and their
actual measured total biomass under ARSS is given in
Table 4. Total biomass measurement is a difficult task
since it contains the below ground biomass as well that
along the branches.

The values of Ĉk, RP1 , RP2 (based on Table 4) and
RP3 for two set sizes k=4 and k=8 were computed. The
values of Ĉk for k=4 and k=5 were calculated as 0.3198
and -0.4697 respectively. The values of RP1 , RP2 and
RP3 were obtained for k=4 as 1.753, 3.755 and 2.317 re-
spectively. However, the same respective values for k=8
were obtained as 2.687, 4.722 and 4.075. As expected,
the RP of ARSS with respect to SRS exceeds those to
the balanced and Neyman’s allocation methods with re-
spect to SRS.

4 Discussion and Conclusions

McIntyre’s (1952) approach of RSS requires measur-
ing each order statistic and, therefore, the size of the
sample should be at least the same as the set size k (for
m=1). In forestry and environmental inventories, the
measurement of sampling units is difficult and incurs
higher costs and resources due to the frequent field vis-
its and costs therein, however, the ranking of the units
is very easy and takes minimum field visits. The mini-
mum possible sample size for actual measurements with
maximum precision is the primary objective of any mul-
tiphase sample design (Iles, 2003, 2012) and can im-
prove experimental and research study results as well.
The ARSS procedure was useful for reducing the sample
sizes and measuring only the alternate order statistics.
The method of ARSS has its benefits for estimating the
populations mean for even set sizes of mound shaped
symmetric distributions. For these cases, in general,
the relative precision increases as the set size increases,
and the estimator based on ARSS is uniformly better
than SRS and balanced RSS and is also better than
RSS with Neyman’s method. The proposed estimator
is biased. For the known distribution, the bias correc-
tion term may be taken from Table 1. Therefore, once
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Table 2: Performance of different relative precision estimates (RPs; Eqs. 4-–6) for some skewed distributions for
k = 2(1)10.

Distribution1 RPs k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

LN(0,1)

RP1 1.187 1.339 1.471 1.589 1.697 1.797 1.891 1.980 2.065
RP2 8.693 0.977 7.155 1.073 7.046 1.175 7.177 1.273 7.376
RP3 1.578 2.120 2.639 3.141 3.630 4.109 4.580 5.044 5.502

G(2)
RP1 1.391 1.753 2.096 2.759 2.742 3.052 3.354 3.650 3.940
RP2 2.909 1.529 3.613 2.043 4.360 2.538 5.090 3.018 5.798
RP3 1.502 1.987 2.460 3.444 3.387 3.842 4.294 4.743 5.189

G(1)
RP1 1.333 1.636 1.920 2.190 2.449 2.700 2.944 3.181 3.414
RP2 4.000 1.359 4.114 1.747 4.619 2.125 5.174 2.492 5.731
RP3 1.528 2.039 2.538 3.029 3.512 3.991 4.464 4.934 5.401

G(0.5)
RP1 1.245 1.483 1.696 1.905 2.071 2.277 2.512 2.632 *2

RP2 5.789 1.157 4.835 1.417 4.922 1.679 5.748 1.935 *
RP3 1.537 2.116 2.653 3.196 3.675 4.210 4.837 5.215 *

P(5)
RP1 1.228 1.418 1.586 1.739 1.880 2.013 2.137 * *
RP2 6.764 1.067 5.902 1.220 6.056 1.371 6.381 * *
RP3 1.559 2.086 2.593 3.087 3.565 4.047 4.510 * *

P(4.5)
RP1 1.213 1.390 1.545 1.685 1.813 1.933 2.045 * *
RP2 7.310 1.035 6.266 1.166 6.370 1.297 6.656 * *
RP3 1.564 2.096 2.605 3.100 3.584 4.065 4.525 * *

P(3)
RP1 1.136 1.242 1.331 1.407 1.476 1.537 1.594 * *
RP2 12.500 0.880 9.659 0.912 9.271 0.958 9.274 * *
RP3 1.604 2.165 2.699 3.213 3.712 4.199 4.677 * *

W(0.5)
RP1 1.127 1.236 1.335 1.425 1.509 1.589 1.665 1.737 1.807
RP2 16.000 0.874 9.013 0.936 7.758 1.016 7.333 1.097 7.181
RP3 1.647 2.266 2.862 3.439 4.002 4.553 5.093 5.625 6.150

Half Logistic
RP1 1.398 1.754 2.090 2.411 2.721 3.022 3.316 3.599 3.886
RP2 3.167 1.522 3.784 2.015 4.506 2.489 5.220 2.948 5.915
RP3 1.529 2.028 2.517 2.998 3.473 3.944 4.411 4.866 4.992

Half Normal

RP1 1.431 1.842 2.241 2.630 3.012 3.388 3.759 4.126 4.489
RP2 2.509 1.715 3.284 2.398 4.106 3.062 4.921 3.715 5.722
RP3 0.571 0.571 0.571 0.571 0.571 0.571 4.394 4.865 5.334

1LN = Lognormal; G = Gamma; P=Pareto; W=Weibull; N=Normal; U=Uniform
2Some means and variances of order statistics in the literature were not found, these entries are denoted by *

the best possible probability distribution is fitted based
on the sampled observations, ARSS methodology using
the bias correction factor can be applied appropriately.
In this methodology, those even set sizes of skewed and
odd set sizes of Mound shaped symmetric distributions
should be used which are nearer to the required sample
size for the study. The advantages are seen in terms
of gain in relative precision and its simplicity in real
applications. The real-life example of a sample survey
in forest also demonstrates the utility of the proposed
ARSS. This methodology may also be useful in develop-
ing allometric equations for estimating the parameters
like below ground biomass by providing a mechanism to

select trees across the range of tree sizes based on ranks
from smaller samples. The proposed method is strongly
recommended for estimating the population means for
even set sizes of skewed and odd set sizes of Mound
shaped symmetric distributions and has immense util-
ity in studies related to forestry and environment.
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Table 3: Performance of different relative precision estimates (RPs; Eqs. 4—6) for some symmetric distributions for
k =2(1)10. (Note: U - Uniform distribution and N - Normal distribution)

Distributions RPs k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

U(0, 1)

RP1 1.500 2.000 2.500 3.000 3.500 4.000 4.500 4.500 5.500
RP2 1.500 2.222 2.500 3.316 3.500 4.364 4.500 5.392 5.500
RP3 1.500 2.010 2.526 3.046 3.569 4.095 4.623 5.152 5.682

N(0, 1)
RP1 1.467 1.914 2.347 2.770 3.186 3.595 3.999 4.399 4.794
RP2 1.467 1.787 2.347 2.538 3.186 3.270 3.999 3.989 4.794
RP3 1.467 1.919 2.361 2.797 3.228 3.655 4.078 4.500 4.919

Standard Special
RP1 1.401 1.752 2.072 2.371 2.654 2.924 3.183 3.434 3.745
RP2 1.401 1.459 2.072 1.874 2.654 2.258 3.183 2.619 3.745
RP3 1.401 1.793 2.177 2.552 2.922 3.287 3.648 4.006 4.488

Asymptotic Normal

RP1 1.190 1.703 2.192 2.665 3.124 3.575 4.017 4.457 4.884
RP2 1.190 1.616 2.192 2.492 3.124 3.324 4.017 4.138 4.884
RP3 1.190 1.706 2.200 2.680 3.150 3.612 4.067 4.521 4.965

Table 4: Total biomass (tonnes per 0.1 hectare) of different order statistics for set size k=4 and 8.

Cycle no.
Set Size k=4 Set Size k=8

1 3 1 3 5 7

I 0.3006 0.4633 0.5282 0.6025 1.6855 3.9064
II 0.2036 0.4396 0.4598 0.6826 2.1625 2.8035
III 0.2455 0.5572 0.1730 0.5126 1.2586 2.8035
IV 0.2632 0.6186 0.3006 0.7162 0.8122 1.5508
V 0.7334 2.8035 0.4864 1.6400 2.1625 3.0108
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Appendix A

Details of trees measured for the above ground biomass and total biomass

Table A1. Deodar

Tree
No,

Altitude
(asl)

AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

Tree
No,

Altitude
(asl)

AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

27 1500-2000 0.92959 1.18988 127 2001-2500 0.20516 0.26261
28 1500-2000 1.50643 1.92823 128 2001-2500 0.44695 0.5721
61 2001-2500 2.32479 2.97574 129 2001-2500 2.1902 2.80346
62 2001-2500 0.38004 0.48645 130 2001-2500 0.3592 0.45977
63 2001-2500 0.2266 0.29004 131 2001-2500 0.5077 0.64986
64 2001-2500 0.77912 0.99728 132 2001-2500 0.2266 0.29004
65 2001-2500 0.71672 0.9174 133 2001-2500 0.53327 0.68258
66 2001-2500 0.30111 0.38542 134 2001-2500 0.8779 1.12371
67 2001-2500 0.60029 0.76837 135 2001-2500 1.01913 1.30449
68 2001-2500 0.64263 0.82257 136 2001-2500 0.60029 0.76837
69 2001-2500 0.53327 0.68258 137 2001-2500 0.57295 0.73337
70 2001-2500 0.53327 0.68258 138 2001-2500 0.31973 0.40926
71 2001-2500 0.33909 0.43404 139 2001-2500 2.35215 3.01076
72 2001-2500 0.43534 0.55724 140 2001-2500 0.81136 1.03854
73 2001-2500 0.60029 0.76837 141 2001-2500 0.82774 1.05951
74 2001-2500 0.3592 0.45977 142 2001-2500 0.31973 0.40926
75 2001-2500 0.49519 0.63385 143 2001-2500 0.27458 0.35146
76 2001-2500 0.29208 0.37386 144 2001-2500 0.60029 0.76837
77 2001-2500 0.27458 0.35146 145 2001-2500 0.27458 0.35146
78 2001-2500 0.89496 1.14555 146 2001-2500 0.26611 0.34062
79 2001-2500 0.24184 0.30955 147 2001-2500 0.48286 0.61806
80 2001-2500 0.47071 0.60251 148 2001-2500 0.57295 0.73337
81 2001-2500 2.72103 3.48292 149 2001-2500 0.5204 0.66611
82 2001-2500 0.21212 0.27151 150 2001-2500 3.17635 4.06573
83 2001-2500 0.55954 0.71621 151 2001-2500 0.30111 0.38542
84 2001-2500 0.5077 0.64986 152 2001-2500 4.03747 5.16796
85 2001-2500 0.48286 0.61806 153 2001-2500 0.34905 0.44679
86 2001-2500 0.98281 1.258 154 2001-2500 0.44695 0.5721
87 2001-2500 0.45874 0.58719 155 2501-3000 1.44042 1.84373
88 2001-2500 0.21926 0.28065 156 2501-3000 1.68944 2.16248
89 2001-2500 0.58653 0.75076 157 2501-3000 0.1097 0.14041
90 2001-2500 0.64263 0.82257 158 2501-3000 0.91219 1.16761
91 2001-2500 0.49519 0.63385 159 2501-3000 0.89496 1.14555
92 2001-2500 0.43534 0.55724 160 2501-3000 0.12395 0.15865
93 2001-2500 0.38004 0.48645 161 2501-3000 1.7847 2.28441
94 2001-2500 0.41267 0.52822 162 2501-3000 2.1902 2.80346
95 2001-2500 0.43534 0.55724 163 2501-3000 0.53327 0.68258
96 2001-2500 0.57295 0.73337 164 2501-3000 1.05613 1.35184
97 2001-2500 0.47071 0.60251 165 2501-3000 0.8779 1.12371
98 2001-2500 3.05188 3.90641 166 2501-3000 1.46226 1.8717
99 2001-2500 0.28324 0.36254 167 2501-3000 1.05613 1.35184
100 2001-2500 0.42392 0.54261 168 2501-3000 1.68944 2.16248
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Table A1. Deodar (Continued)

Tree
No,

Altitude
(asl)

AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

Tree
No,

Altitude
(asl)

AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

101 2001-2500 0.38004 0.48645 169 2501-3000 0.92959 1.18988
102 2001-2500 0.47071 0.60251 170 2501-3000 1.05613 1.35184
103 2001-2500 0.17326 0.22177 171 2501-3000 0.74757 0.95689
104 2001-2500 0.21926 0.28065 172 2501-3000 2.46306 3.15271
105 2001-2500 0.30111 0.38542 173 2501-3000 2.86932 3.67273
106 2001-2500 0.5077 0.64986 174 2501-3000 0.38004 0.48645
107 2001-2500 0.25783 0.33003 175 2501-3000 1.25104 1.60133
108 2001-2500 0.54631 0.69928 176 2501-3000 1.13211 1.4491
109 2001-2500 0.5204 0.66611 177 2501-3000 0.71672 0.9174
110 2001-2500 0.57295 0.73337 178 2501-3000 1.19083 1.52427
111 2001-2500 0.33909 0.43404 180 2501-3000 2.1374 2.73588
112 2001-2500 0.39073 0.50014 181 2501-3000 2.1902 2.80346
113 2001-2500 0.48286 0.61806 182 2501-3000 0.60029 0.76837
114 2001-2500 0.45874 0.58719 183 2501-3000 5.52733 7.07498
115 2001-2500 0.47071 0.60251 184 2501-3000 0.57295 0.73337
116 2001-2500 0.36953 0.47299 185 2501-3000 0.21212 0.27151
117 2001-2500 0.31973 0.40926 186 2501-3000 0.19182 0.24554
118 2001-2500 0.29208 0.37386 187 2501-3000 0.60029 0.76837
119 2001-2500 0.45874 0.58719 188 2501-3000 0.82774 1.05951
120 2001-2500 0.70155 0.89799 189 2501-3000 0.11296 0.14459
121 2001-2500 0.2266 0.29004 190 2501-3000 1.17109 1.499
122 2001-2500 0.39073 0.50014 191 2501-3000 0.15642 0.20022
123 2001-2500 2.1902 2.80346 192 2501-3000 0.19182 0.24554
124 2001-2500 2.1902 2.80346 193 2501-3000 0.13225 0.16928
125 2001-2500 2.86932 3.67273 194 2501-3000 0.19182 0.24554
126 2001-2500 0.3592 0.45977

Table A2. Kail

Tree
No,

Altitude
(asl)

AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

Tree
No,

Altitude
(asl)

AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

179 2501-3000 0.09024 0.11551 202 2501-3000 0.29075 0.37216
195 2501-3000 1.70322 2.18012 203 2501-3000 0.09729 0.12453
196 2501-3000 1.6553 2.11879 204 2501-3000 0.21495 0.27513
197 2501-3000 1.85071 2.36891 205 2501-3000 1.38121 1.76794
198 2501-3000 1.21153 1.55076 206 2501-3000 1.70322 2.18012
199 2501-3000 1.05262 1.34735 207 2501-3000 1.17079 1.49861
200 2501-3000 1.29504 1.65765 208 2501-3000 2.05595 2.63162
201 2501-3000 0.5034 0.64436
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Table A3. Chir pine

Tree
No,

Altitude (asl) AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

Tree
No,

Altitude (asl) AGB
(t/0.1ha)

total
biomass
(t/0.1ha)

1 1500-2000 0.00403 0.34057 32 1500-2000 0.15907 0.20362
2 1500-2000 0.00508 0.70468 33 1500-2000 0.34341 0.43956
3 1500-2000 0.17176 0.21985 34 1500-2000 0.23486 0.30062
4 1500-2000 0.2056 1.63996 35 1500-2000 0.11851 0.15169
5 1500-2000 0.22736 1.68547 36 1500-2000 0.56217 0.71958
6 1500-2000 0.22736 0.39401 37 1500-2000 0.2824 0.36148
7 1500-2000 0.23486 0.29103 38 1500-2000 0.4725 0.60481
8 1500-2000 0.26607 0.30062 39 1500-2000 0.73781 0.9444
9 1500-2000 0.30782 0.29103 40 1500-2000 1.11076 1.42177
10 1500-2000 0.30782 0.39401 41 1500-2000 0.1917 0.24538
11 1500-2000 0.30782 1.55082 42 1500-2000 0.17176 0.21985
12 1500-2000 0.32537 0.67537 43 1500-2000 0.55053 0.70468
13 1500-2000 0.36193 0.56434 44 1500-2000 1.38934 1.77835
14 1500-2000 0.42042 0.81219 45 1500-2000 0.52763 0.67537
15 1500-2000 0.44089 0.53814 46 1500-2000 0.13516 0.17301
16 1500-2000 0.46184 0.00516 47 1500-2000 0.25809 0.33035
17 1500-2000 0.48329 0.59116 48 1500-2000 0.48329 0.61861
18 1500-2000 0.49419 0.61861 49 1500-2000 0.48329 0.61861
19 1500-2000 0.52763 0.39401 50 1500-2000 0.23486 0.30062
20 1500-2000 0.55053 0.41647 51 1500-2000 0.37137 0.47536
21 1500-2000 0.63452 0.63256 52 1500-2000 1.31677 1.68547
22 1500-2000 1.21157 0.26317 53 1500-2000 0.34341 0.43956
23 1500-2000 1.21157 0.00651 54 1500-2000 0.14688 0.188
24 1500-2000 1.28122 0.46327 55 1500-2000 0.29075 0.37217
25 1500-2000 1.31677 1.55082 56 1500-2000 0.45131 0.57767
26 1500-2000 0.48329 0.61861 57 1500-2000 1.28122 1.63996
29 1500-2000 0.23486 0.30062 58 1500-2000 0.29075 0.37217
30 1500-2000 0.40044 0.51256 59 1500-2000 0.48329 0.61861
31 1500-2000 0.57392 0.73462 60 1500-2000 0.50522 0.64668
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