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Abstract. The spread of forest fire is an extremely complex and harmful natural phenomenon. The
existing model fails to combine the influence factors of forest fire spread, and the the error of prediction will
increase with time. In this paper, the Ensemble Kalman Filter (ENKF) algorithm is applied to the field
of forest fire spread so that it can better optimize the speed of forest fire. Firstly, the Rothermel formula
of fire speed is simplified, and the speed value of simplified Rothermel is optimized by the speed value of
actual measured about fire spread, so that the optimal speed value is obtained, then the optimal speed is
input into Cellular Automata (CA) to simulate the spread of forest fire. Secondly, the experiment is carried
out by changing the slope, bed thickness, moisture content, load and wind speed, then the measured speed
of fire spread, the speed of simplified Rothermel and the optimized speed by ENKF are compared in the
process of fire spread. Finally, the experimental results show that the error of fire speed optimized by
ENKF is smaller, the contour simulated by CA with the ENKF is closer to the contour of real fire spread,
and the highest similarity index is 0.854. The model proposed in this paper has the ability to predict the
spread of forest fire indoors.

Keywords: Ensemble Kalman filter; Rothermel forest fire spread formula; fire spread prediction;
fire spread contour error

1 Background

The forest fire is a serious natural disaster, which
causes a lot of loss of people and property every year
(Pagnini et al, 2014). Therefore, it is necessary to im-
prove the existing model so that it can better predict the
spread of forest fire (Dhall et al, 2017). At present, the
forest fire spread models include the Rothermel of the
United States, the MacArthur spread model of Canada,
and the Wang Zhengfei model of China. The above are
empirical models based on a large number of data. Cur-
rently, the models of forest fire spread obtained by schol-
ars using intelligent algorithms are all based on the ex-
tension of the above models (Zhou et al, 2020). In recent
years, with the great achievements of data assimilation
in the weather forecasting, data assimilation methods
have been widely used in other directions. For example,
there are applications of data assimilation in the fields

of hydrological information, soil moisture, ocean surface
information and so on (Metref et al, 2019).

Ntinas (2016) proposed the Fuzzy CA (FCA) model
adopted a data-driven approach based on evolutionary
optimization, which allowed incorporating knowledge
from real wildfire in order to enhance its accuracy, then
the model is compared with two different models of for-
est fire spread and the observed forest fire in the paper,
the results shown that the model proposed in the pa-
per had a strong practicality. Denham (2012) described
a Dynamic Data-Driven Genetic Algorithm (DDDGA)
used as steering strategy to automatically adjust highly
dynamic input data values of forest fire simulators taking
into account the underlying propagation model and real
fire behaviour, the experimental results shown that the
prediction method of forest fire spread proposed in this
paper was an important improvement compared with
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the previous algorithms. Valero (2017) used unsuper-
vised edge detectors to automatically track the location
around the fire, the remote sensing data were used to
optimize the fuel and wind parameters of the simulator,
which were assumed to remain unchanged for a certain
period of time, and the optimal parameters were used
to predict the fire development,the experiments showed
that it can be adapted to sufficiently complex and di-
verse data sets.

There is a great advantage about the algorithm pro-
posed by scholars, but it is necessary to analyze and store
the covariance matrix with time in the process of calcu-
lating fire spread, which will increase the running time
of the algorithm. In addition, many scholars use com-
puter software to verify the model instead of carrying
out real fire spread experiments, and fail to fully con-
sider the complex influencing factors such as wind speed
and moisture content in fire spread. In this paper, the
prediction model of forest fire spread is established by
using CA and data assimilation method. The simulated
speed of the simplified Rothermel is optimizing by the
observed speed with the data assimilation, then the op-
timal speed of the forest fire spread is obtained. The
simulated contour of fire spread is obtained by combin-
ing the optimal speed with the CA, and the accuracy of
the model is verified by the combustion experiment in
the laboratory, which provides a new idea for the forest
fire spread prediction model.

2 Methods

As a bridge between observed data and simulated
data, the method of data assimilation has been con-
cerned by scholars. At present, the data assimilation
has been widely used in many fields, such as atmosphere,
ocean, ecology and so on (Pilo et al, 2018). The data
assimilation (Jin et al, 2018) is on the basis of model
dynamics, combining direct or indirect observed data,
integrating the model and various observed factors at
the same time, and constantly relying on the observed
data to adjust the model to reduce errors. The data
assimilation includes four basic elements (Tartes et al,
2014), and the corresponding four elements applied in
the field of fire spread are: model of fire spread , ob-
served data of fire spread, data assimilation algorithm,
basic parameters. As a kind of data assimilation, En-
semble Kalman Filter (ENKF) algorithm overcomes the
weakness that Kalman Filter requires tangent model, it
also solves the problem of the amount of calculation of
Kalman Filter algorithm in calculating the covariance of
prediction error. For data assimilation of fire spread, it
is obvious that ENKF is more advantages (Reichle et al,
2002).

The model of fire spread optimized by ENKF is a com-
bination of observed and simulated data to achieve pre-
dicted speed of fire in short time. The simulated value of
the model and the observed value of the real fire spread
are needed in the algorithm, so it is necessary to select
the appropriate fire spread model to realize the accu-
rate prediction of the fire contour. In this paper, The
fire speed of the simplified Rothermel is the simulated
value, The fire speed recorded by the camera and cal-
culated by image processing is the observed value. The
matrix transformation is used to transform the image
coordinates of fire contour into world coordinates as the
observed data of the fire spread. The technical scheme
of this paper is shown in the Fig. (1).

2.1 Simplified model of the Rothermel speed
The Rothermel is a common forest fire spread speed

model, which is an empirical model based on a large
number of data. As shown in Eq. (1), it is the Rothermel
formula of forest fire spread speed:

R =
IR × ζ × (1 + ΦW +ΦS)

Pb × ε×Qig
(1)

where, the IR is the reaction intensity, the ζ is the
spreading rate, the ΦW is the wind speed correction coef-
ficient, the ΦS is slope correction coefficient, the Pb is the
drying particle density, the ε is the effective heat coeffi-
cient, and the Qig is the precombustion heat. The model
needs to input a lot of parameters, and there is a nested
relationship between the parameters, so it needs to be
simplified. The simplified formula is shown in Eq. (2).

R =Bδ(K
W0

δ
)Cexp[C · (1−K

W0

δ
)

+ E(K
W0

δ
+ 0.1)f(m)]

[1 +GUH(K
W0

δ
)I + J(

W0

δ
)−0.3(tanΦ)2]

(2)

where B, C, E, G, H, I, J and K are the parameters to
be estimated respectively, and the methods have been
given in the previous studies (Hua et al, 2020). The δ
is the thickness of combustible bed, the W0 is the load
of dried combustibles, the U is the wind speed in the
middle of the flame, the Φ is the slope angle, the Mf is
the moisture content of combustibles, the Mx is the ex-
tinguishing moisture content of combustibles, the f(m)
is a function containing Mf and Mx. The U , W0, Φ,
f(m) and δ are independent variables, and the R is the
speed of forest fire which is a dependent variable in the
Eq. (2).

2.2 Observated speed value of forest fire spread
In order to find the speed of fire spread, the pixel

coordinates of the fire contour in the image must be
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Figure 1: The technical scheme of this paper.

transformed into the coordinates in the world coordi-
nate system. According to the principle of Perspective
Transformation (Rossi et al, 2019), the coordinates of
point pixels in an image is to transform the coordinates
of the real corresponding points, and the speed of the
fire spread is obtained. As shown in the Eq. (3), it is the
Perspective Transformation.XY

Z

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

xy
1

 (3)

where

a11 a12 a13
a21 a22 a23
a31 a32 a33

 is the Perspective transforma-

tion matrix,

xy
1

 is pixel coordinates in an image,

XY
Z


is real coordinates of the corresponding point. Since all
the points are in the same plane, Eq. (4) and Eq. (5)
can be obtained by dividing both sides of the equation
in Eq. (3) by Z at the same time:

X ′ = X
Z

Y ′ = Y
Z

Z ′ = Z
Z

(4)

simplify: 
X ′ = a11x+a12y+a13

a31x+a32x+a33

Y ′ = a21x+a22x+a23

a31x+a32y+a33

Z ′ = 1

(5)

The {a11, a12, a13, a21, a22, a23, a31, a32} can be solved
by finding four known coordinates in the image accord-

ing to Eq. (5). The camera can easily identify the cor-
ners of the four corners of the calibration plate, so it is
necessary to put the calibration plate on the combus-
tion bed before the experiment, and the coordinates of
all the points on the combustion plane can be obtained
through the calibration plate. As shown in the Fig. (2),
the calibration plate is placed on the combustion bed.

Figure 2: The position of calibration plate and combus-
tion bed.

When the coordinates of the points on the fire contour
are known, the ratio of the distance between the two
fire contours to the interval time is the spread speed
of the fire. As shown in Fig. (3), it is the calculation
for speed of fire contour. At the initial time, the point
P1 is selected on the fire line of “L”, make the tangent
of the fire line of “L” through P1, and then make the
perpendicular line of the tangent line after P1, and the
intersection P

′

1 of this vertical line and the next time of
fire line “L

′
” is the corresponding spreading point of the

next time.
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Figure 3: The schematic of fire line speed calculation.

2.3 Prediction model of forest fire spread based
on ENKF

The basic method of ENKF (Rochoux et al, 2014)
algorithm is to assume a set for the state quantity, each
set represents the possible value of the state quantity,
and the mean value of the set is the optimal estimation
of the state quantity. Each set is integrated forward
through the model to predict the amount of state of
each set at the next time. For each moment when there
is observed data, each set is updated separately with the
observed data. In this case, the mean value of all sets is
the optimal estimated value of the state quantity.

(1) State Vector
In order to assimilate the predicted speed of fire spread

by ENKF, it is necessary to generate the state vector of
the initial set. The state vector is shown in Eq. (6):

yt,j = {R}, j = 1 · · · · · ·N (6)

where the yt,j is the State Vector, the t is the time, the
j is the member of the set, the N is the number of the
set, the R is the speed of the fire.
(2) Prediction process
The predicted state vector of the current moment can

be obtained from the analysis of the previous moment
by Eq. (7), in the predicted step, all the dynamic pa-
rameters change with time.

yft,j = F (yat−1,j) (7)

where the F (·) is the model of fire spread speed, the f is
the predicted value , the a is the analytical value. The
yft,j is the forecast state vector of set member j at time
t, and yat−1,j is the analytical value state vector of and
set member j at time t.

(3) Generate disturbance observations
In the update phase, it is necessary to disturb the

observed data to get the observed vectors of each set
member at the time t.

duct,j = yOt −Hyft,j + v(n) (8)

where the duct,j is the disturbance data of j set at time

t of fire spread, the yOt is the observed speed of time t,
the H is the observed factor and the mapping from state

variables to observed data, the v(n) is an observed error
and satisfies that the mean value is 0 and the covariance
matrix is Rt normal distribution.
(4) Data assimilation

yat,j = yft,j +Ktd
uc
t,j (9)

where the yat,j is the analytical value of j set at t time,
the Kt is the set Kalman filter factor, and the Kt is
composed of observed error variance matrix Rt, variance
matrix of state predicted error P f

t and observed factor
H.

Kt = P f
t H

T (HP f
t H

T +Rt)
−1 (10)

where

pft =
1

N − 1

N∑
j=1

(yft,j − yft,j)(y
f
t,j − yft,j)

T (11)

The analytical value of model by data assimilation at
the current time and the predicted value of the model
at the next time can be obtained by Eq. (7)-Eq. (9). As
shown in the Fig. (4), it is the process of predicting fire
spread by the ENKF.

2.4 Forest Fire Spreading Model of CA
The self-organization of Cellular Automata (CA) is

similar the fire spread (Hui et al, 2016). It is a new
method to combine empirical model with CA to form
a new semi-physical and semi-empirical model of forest
fire spread (Sun et al, 2013). In this paper, the method
of combining Rothermel with CA can well simulate the
spread of forest fire, so as to realize the simulation of for-
est fire spread. The CA is composed of cellular space,
cellular domain, cellular state and local transition rules.
In this paper, the space of the defined cell is consistent
with the size of the actual burning area, and eight do-
mains are selected as the domain of the cell. Next, the
cellular state and local transition rules of CA will be
introduced in detail.
(1)The Cellular state
As shown in the Eq. (13), the state value can be deter-

mined according to the ratio of the burning area to the
cell area, and the state value can be divided into three
types: state 1(At

i,j = 0) is combustible, but has not been
ignited, state 2(0 < At

i,j < 1) is burning and not fully
burned, and state 3(At

i,j = 1) is that the fuel has been
burned, which can’t be ignited and burned. If the state
of the cell is 1, the next moment is state 2. If the state
of the cell is 2, the state of the cell at the next moment
is 3, which means that the existing fuel has been burnt
out and can no longer be ignited and burned.

At
ij =

SBurningArea

SCellarea
(12)

mailto://2018010083zsy@nefu.edu.cn
http://mcfns.com


Zhang et al. (2021)/Math.Comput. For.Nat.-Res. Sci. Vol. 13, Issue 2, pp. 5–13/http://mcfns.com 9

Figure 4: The ENKF forest fire spread prediction model.

(2)The local transition rules of CA
As shown in Eq. (13) and Fig. (5), the burning state

of the central cell at the t + ∆t is determined by the
state of the domain cell at the time t and the spreading
speed of the domain cell.

At+∆t
i,j =At

i,j + f(Rt
1→5, R

t
1→5, R

t
2→5, R

t
3→5, R

t
4→5,

Rt
6→5, R

t
7→5, R

t
8→5, R

t
9→5)

(13)

where the R is the speed of fire spread, and its value is
calculated by the simplified Rothermel.

Figure 5: The state of CA.

The state of the central cell at the time t+∆t can be
calculated by the Eq. (14). As shown in Eq. (14) and
Fig. (6), the eight cells around the central cell are di-
vided into 2, 4, 6, 8 domain cells and 1, 3, 7, 9 sub-domain
cells. The position of domain cells and sub-domain cells

relative to the central cell is different, so the local tran-
sition rules need to be discussed separately. Firstly, for
the 2, 4, 6, 8 domain cells, take the cell 2(i − 1, j) as an
example, the speed of cell 2(i − 1, j) spreading to cell
5(i, j) is R(2→5), the time is ∆t, the side length of the
cell is a, the burning area of the cell S = a ·R(2→5) ·∆t
can be calculated, and then the burning area ratio is
R(2→5)·∆t

a . Similarly, the burning area and burning area
ratio of the cells in the other three domains 4, 6, 8 can
be obtained. Secondly, for the 1, 3, 7, 9 sub-domain cells,
take the cell 7(i − 1, j − 1) as an example, the speed of
cell 7(i− 1, j − 1) spreading to cell 5(i, j) is R(7→5), the
time is ∆t, the side length of the cell is a, the burning

area of the cell S =
(R(7→5)∆t)2

2 can be calculated, and

then the burning area ratio is
(R(7→5)∆t)2

2a2 . Similarly, the
burning area and burning area ratio of the cells in the
other three sun-domains 1, 3, 9 can be obtained. It is
concluded that the local transition rules of domain cell
1(i− 1, j − 1), 3(i− 1, j + 1), 7(i+ 1, j), 9(i+ 1, j + 1),
2(i−1, j), 4(i, j−1), 6(i, j+1), 8(i+1, j) around central
cell 5(i, j) are obtained:

At+∆t
i,j =At

i,j +
(Rt

2→5 +Rt
4→5 +Rt

6→5 +Rt
8→5)∆t

a

+
[(Rt

1→5)
2 + (Rt

3→5)
2 + (Rt

7→5)
2 + (Rt

9→5)
2]∆t2

2a2
(14)

where At+∆t
i,j is the cellular state of the cell at the t

time. Only when the state value of the cell is ≥ 1, the
cell is completely burned, and the cell has the ability to
spread to the surrounding eight cells, otherwise the cell
does not have the ability to spread. Where the ∆t is 1
second, the a is the side length of a single cell, according
to the total numbers of the cells and the total areas of
the combustion bed, it is concluded that the side length
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of a single treasure is 0.02m, and R is the speed of fire
spread in eight directions.

Figure 6: The speed of CA.

3 Experiments and results

The place of experiment is the Maoershan Forest
Fire Research Laboratory(N45◦, E127◦) of Northeast
Forestry University, and the details of the experiment
are as follows. The inclination of the combustion bed
are 0◦ and 8◦, the speed of wind is recorded by the
anemometer, and the area of combustible material is
0.8m*0.6m. The spread of the fire is recorded by the
camera, and the contour of the fire is obtained through
the image processing technology. The Pinussylvestris
var. mongolica is taken as the research object of this
paper, because of the large quantity and strong flamma-
bility in Maoershan. The experiment dataset consists of
the training datasets and testing datasets in the paper.
In the training datasets, the angles between the direc-
tion of fire spread and the direction of wind are 0◦, 45◦,
90◦, 135◦ and 180◦, which are the 8 directions of CA.
The aim of the training dataset is to obtain the value of
the B, C, E, G, H, I, J and K after knowing the depen-
dent variable and independent variable in the simplified
Rothermel formula. Through the training datasets, the
speeds of simplified Rothermel in eight directions are
obtained. In the testing datasets, the slope of the com-
bustion bed are two stages to verify the accuracy of the
model in the same fire spread. The training datasets
and the testing datasests are shown in the Tab. 1 and
Tab. 2.

The parameters B, C, E, G, H, I, J and K of simpli-
fied Rothermel in eight directions are obtained by non-
linear fitting using LM(Levenberg-Marquardt) method,
that is, the speeds of the local transition rules in CA are
obtained, the contour of the fire spread is simulated by
CA. For simplicity, the speed in the direction of the fire
front is used as the object of comparison, the speed opti-
mized by the ENKF and the speed of simplified Rother-
mel are compared. The speed variation with time about
the testing datasets are shown in Fig. (7) and Fig. (8).
As shown in Fig. (7) and Fig. (8), the blue broken line is
the speed optimized by ENKF, the red one is the speed
simulated by the simplified Rothermel, and the black
one is the measured value. The error bar is also shown
in the blue and red broken lines in the figures. It can
be seen from the figures that the speed optimized by the
ENKF is closer to the measured value, and the error is
smaller.

Figure 7: The speed of fire spread and the error bar with
time about the testing dataset 1.

The real contour of fire spread is obtained by using the
method of image processing. The last moment contour
of fire spread is shown in the Fig. (9) and Fig. (10).
The black line is the real contour of fire spread, the red
one is the contour simulated by CA with the simplified
Rothermel, and the blue one is contour simulated by
CA with the optimized by the ENKF. Eq. (15) is the
formula for measuring contour similarity (Finney et al,
2013), the closer the contour similarity is, the closer the
value of J is to 1.

J =
Aob ∩Am

Aob ∪Am
(15)

where the Aob is the value of the observed area, the Am

is the area value simulated for the model.

mailto://2018010083zsy@nefu.edu.cn
http://mcfns.com


Zhang et al. (2021)/Math.Comput. For.Nat.-Res. Sci. Vol. 13, Issue 2, pp. 5–13/http://mcfns.com 11

Table 1: The training datasets.

No.
Weight
(kg)

Aera
(m2)

Load
(kg/m2)

Thickness
(m)

Slope (◦)
Moisture

content (%)

Angle between
wind direction and
spread direction(◦)

1 0.69 0.8*0.6 1.44 0.05 Up/8 5.24% 0
2 0.62 0.8*0.6 1.29 0.04 Up/8 6.14% 45
3 0.83 0.8*0.6 1.73 0.07 Up/8 7.00% 90
4 0.91 0.8*0.6 1.9 0.07 Up/8 8.37% 135
5 0.63 0.8*0.6 1.31 0.06 Up/8 8.37% 180
6 0.93 0.8*0.6 1.93 0.07 Down/8 8.92% 0
7 0.53 0.8*0.6 1.1 0.05 Down/8 8.92% 45
8 0.55 0.8*0.6 1.14 0.05 Down/8 8.81% 90
9 1.09 0.8*0.6 2.26 0.08 Down/8 6.49% 135
10 0.73 0.8*0.6 1.52 0.05 Down/8 8.81% 180
11 1.01 0.8*0.6 2.1 0.08 Flat/0 5.24% 0
12 0.79 0.8*0.6 1.65 0.04 Flat/0 6.14% 45
13 0.92 0.8*0.6 1.92 0.07 Flat/0 6.45% 90
14 0.8 0.8*0.6 1.67 0.05 Flat/0 5.10% 135
15 0.98 0.8*0.6 2.05 0.07 Flat/0 5.10% 180

Table 2: The testing datasests.

No. Slope(◦)
Wind

direction
Area of first
stage(m2)

Area of second
stage (m2)

Load
(kg/m2)

Thickness
(m)

Moisture
content

1 Flat-Up/8◦ Downwind 0.8*0.5 0.8*0.5 2.28 0.05 7.68%
2 Up/8◦-Down 8◦ Headwind 0.8*0.5 08.*0.5 1.82 0.05 5.38%

Figure 8: The speed of fire spread and the error bar with
time about the tesing datasest 2.

The similarity index J for last moment of fire spread
are shown as follows. For testing dataset 1, the similarity

Figure 9: The contour comparison about the testing
dataset 1.

Figure 10: The contour comparison about the tesing
datasest 2.
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index J of contour simulated by CA with the simplified
Rothermel and real contour is 0.782, the similarity in-
dex J of contour simulated simulated by CA with the
ENKF and real contour is 0.854. For testing dataset
2, the similarity index J of contour simulated by CA
with the simplified Rothermel and real contour is 0.755,
the similarity index J of contour simulated simulated by
CA with the ENKF and real contour is 0.838. It can be
seen that the similarity index J of contour simulated by
CA with the ENKF is close to 1 , that is , the model
simulation by ENKF is better.

4 Conclusion

It is found that the existing model fails to take into
account the influence of many factors on the spread of
forest fire, so the simulated speed of the model is quite
different from the spread of real speed, and this error
will increase with the increase of time. In this paper,
a optimized algorithm of fire speed based on ENKF is
proposed. To achieve the purpose of eliminating errors
through the ENKF, the simulated speed of the simpli-
fied Rothermel is combined with the the real measured
speed, and the contour of forest fire spread is simulated
by CA with the ENKF. The experimental results show
that the contour simulated by CA with the ENKF has
a better effect.

The experimental results show that the model pro-
posed in this paper has a good prediction effect, how-
ever there are still errors. The main reason for the error
is that the moisture content of combustible materials
changes with time. In the future research, more com-
bustibles and larger burning area should be used to ver-
ify the effectiveness of the model.
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