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Abstract. We introduce a new statistical distribution for modeling the number of trees that fall in
segmented LiDAR point clouds. Average tree count is modeled as a linear function of segment ground
area, but the same methods can be used to fit more complex non-linear models. Although observed mean
occurrences can be continuous, occurrences must be a non-negative integer implying the usual assumption
of normal errors may not be adequate. The starting point for a new distribution is the Poisson. The
Poisson is based on the premise of rare events from a large population. The probability a particular
tree falls in a given point cloud segment is small and the number of segments is large, hence the Poisson
distribution should be an appropriate error distribution for modeling the number of trees that fall in
a point cloud segment. Deviation from the Poisson occurs as a result of the point cloud segmentation
process. The purpose of segmentation is to provide segments that contain a single tree. This implies
that a Poisson with deflated probability of zero occurrences and inflated probability of one occurrence is
appropriate. LiDAR point cloud data on 20 stem mapped plots are used to show the utility of this approach.
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1 Introduction

Predicting forest inventory metrics from remotely
sensed data is not a new idea (Pope, 1962). However,
the ability to generate and process rich data across a
wide area using computers has improved recently. Light
Detection and Ranging (LiDAR) data can be collected
under a variety of platforms, but aerial laser scanning
(ALS) appears to be the only method with applications
at an industrial scale. LiDAR point clouds generated
from ALS can be post-processed into tree approximate
objects (Jeronimo et al., 2018). Estimating individual
tree attributes from ALS point clouds is desirable
over alternatives like the area based approach, as a
treelist is generated that can be furnished to growth
and yield systems (e.x. individual tree models or
stand table projection). To the same end, unbiased
estimates of forest inventory derived from LiDAR are
critical to the production of long-term sustainable forest
management plans. Experience with tree approximate
objects from LiDAR point clouds has found large
biases in tree count and derivative forest inventory
estimates. Rarely is the strength of ALS to distribute
a sample unbiased estimate utilized, which requires

modelers to consider the nuance between training a
model and correcting an estimate (Iles, 2018). With
that aim, stem-mapped plots can be installed to mea-
sure and correct tree count bias (Flewelling, 2008, 2009).

The aim of this paper is to demonstrate an error dis-
tribution novel to forestry science and statistics, the zero
deflated and one inflated Poisson. The zero deflated and
one inflated distribution is compared to the alternative
normal and Poisson error distributions. Geometric mean
log-likelihood of models developed to correct biases in-
herent to segmented ALS point clouds are compared for
each of the error distributions. A dataset of 20 stem-
mapped plots is used to make the comparison. Due to
our limited sample size, we forgo benchmarking multi-
ple segmentation algorithms, but the principles demon-
strated are universally applicable.

2 Methods

2.1 Data for parameterizing models Twenty stem
mapped plots were installed in loblolly pine (Pinus
taeda) and slash pine (Pinus elliottii) forests representa-
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Table 1: Characteristics of the twenty stem mapped
plots in Pinus taeda and Pinus elliottii plantations

Variable Mean Min Max

Total age 19.3 15 24

Basal area (m2/ha) 23.4 12.8 39.9

Trees per hectare 137 58.1 260.4

Dominant height (m) 17.9 14.3 22

tive of industrial forest management practices of coastal
Georgia. Plots covered a wide range of stand ages and
included thinned and unthinned forests (Table 1). The
location of each tree, within a given plot, was estab-
lished using Haglöfs Postex system (Lämås, 2010). Rel-
ative position of each tree in a given plot was referenced
to a sub-meter position measured using the Trimble R1
GNSS sub-meter receiver. Plot sizes were limited to a
13.7-meter radius, after experience with the Postex sys-
tem found dense vegetation limited the ability to mea-
sure larger plot sizes (Figure 1).

Figure 1: Pine plantation with vegetation limiting plot
size to 13.7-meter radius using the Haglöf Postex system.

All plot measurements were taken coincident with
ALS captured between January and February 2020 us-
ing a Riegl VQ-1560i sensor. The recorded pulse den-
sity was nominally 24 points per square meter, the min-
imum flightline overlap was 55%, and the laser foot-
print diameter was 0.263-meter. The maximum sensor
field of view was 58.5◦ equivalent to the maximum scan
angle of 29.25◦. The horizontal and vertical accuracy
was independently validated with ground control check-
points. The vertical RMSE for height was less than
10-centimeters at the 95% confidence interval for both
vegetated and non-vegetated surfaces. These accuracy

statistics were certified by a professional land surveyor to
meet the National Standard for Spatial Data Accuracy
(NSSDA). Treetops were detected using a fixed 2-meter
circular moving window to identify local maxima. Tree-
top detection was completed using lidR (Roussel et al.,
2020). Tree detected points were then segmented into
individual tree polygons using marker-controlled water-
shed segmentation in ForestTools (Plowright and Rous-
sel, 2020).

Segmentation methods for LiDAR point clouds
produce estimates of individual tree crowns. The aim
of segmentation algorithms is to produce segments
that contain a single tree. Alternatively, segments
can contain no trees or multiple trees (Figure 2). A
logical candidate for the statistical distribution of the
number of trees per segment is the Poisson probability
mass function. The Poisson distribution assumes a
large number of cloud segments and a small probability
that a particular tree is in any given segment. As
the aim of segmentation algorithms is to have a single
tree in each segment, it is likely that the number of
occurrences of zero trees in the segment is deflated
and the number of one tree per segment is inflated.
Over the twenty stem mapped plots, 969 segments were
formed. Segments crossing the boundary of a given stem
mapped plot were dropped to avoid undercounting the
average trees per segment. The empirical distributions
of trees per segment along with the Poisson with the
maximum likelihood estimate of λ equal to the mean
trees per segment (691/969 = 0.7131) are plotted in
Figure 3. The Poisson predicts fewer ones and more

Figure 2: On the left panel a stem mapped plot demon-
strates segments with inclusion of zero, one and two
trees. The right panel demonstrates when a single seg-
ment includes a dominant and suppressed tree. White
space indicates area between tree approximate objects.
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Figure 3: Relative frequency of trees per segment across
20 plots and 969 tree approximate objects with the fit-
ted Poisson distribution with mean 0.7131 and variance
(maximum likelihood definition) 0.47959.

zeros, twos and threes than observed. The Law of
Large Numbers suggests the normal distribution might
be a good alternative. Figure 3 shows the observed
relative frequency along with the normal frequency
with observed mean 0.7131 and observed variance
(maximum likelihood definition) 0.47959. The normal
underestimates zeros and overestimates ones. These
results provide motivation for developing a method for
deflating the predicted number of zeros and inflating
the number of ones in the Poisson distribution. Zero
inflated Poisson regression has been studied extensively,
see for example Hall (2000). These regression models
are not suitable for tree per segment data as the zeros
are deflated rather than inflated, but we use a similar
methodology to develop our model.

2.2 Zero deflated and one inflated Poisson The
Poisson probability mass function is P (X = k) = λke−λ

k! ,
where k is a possible observation of trees per segment
and λ is a parameter representing the mean number of
trees per segment. Hence the probability of zero trees

in a segment is P (X = 0) = λ0e−λ

0! = 1e−λ

1 = e−λ

and the probability of a single tree in a segment is

P (X = 1) = λ1e−λ

1! = λe−λ

1 = λe−λ. To deflate the num-
ber of zero occurrences we introduce P (X = 0) = πδe−λ

and to inflate the number of single tree occurrences we
assume P (X = 1) = θ + δe−λ. The π is a constant
multiplier to reduce the number of zero occurrences and

is constrained in the estimation algorithm to be be-
tween zero and one. The θ is added to the probabil-
ity of one tree to increase the number of occurrences
as a constant multiplier that is constrained in the es-
timation algorithm to be between zero and one. The
δ is a multiplier added to all probabilities in the Pois-
son distribution to ensure probabilities sum to one, so

P (X = k > 1) = δλke−λ

k! . The fact that the proba-

bilities must sum to one implies that δ = 1−θ
1+(π−1)e−λ .

A detailed proof is given in Appendix A. We also de-
rive the expected value or mean of the new distribution,

E(X) = θ + λ(1−θ)
[1+(π−1)e−λ] , in the appendix. We will de-

velop a prediction equation (either a constant or mean

or a linear equation) represented by X̂ that will esti-

mate E(X). We make the substitution E(X) = X̂ and

solve for λ = (X̂−θ)
(1−θ) +W

[
(X̂−θ)(π−1)

(1−θ) e
(θ−X̂)
(1−θ)

]
in the ap-

pendix and where, W [x] is the Lambert W function.
The Lambert W function is useful in that the solu-
tion to x = a + becx is x = a − 1

cW [−bceac] (Brito
et al., 2008). Finally, we use these results to derive
the likelihood function for the zero deflated and one in-
flated Poisson. Given a set of observations x1, x2, . . .,
xn (the number of trees observed in each segment in

our case) and corresponding predicted values X̂1, X̂2,

. . ., X̂n the likelihood function can be developed for
the linear model. For the constant or mean approach,
X̂ is constant and the same results apply. The like-
lihood function is defined as L =

∏n
i=1 P (xi = k).

When xi = 0 we have P (xi = 0) = π(1−θ)e−λi
1+(π−1)e−λi when

xi = 1 we have P (xi = 1) = θ + (1−θ)λie−λi
1+(π−1)e−λi and when

xi = k > 1 we have P (xi = k > 1) =
(1−θ)λki e

−λi

(1+(π−1)e−λi )k! ,

where λi = (X̂i−θ)
(1−θ) + W

[
(X̂i−θ)(π−1)

(1−θ) e
(θ−X̂i)
(1−θ)

]
. In prac-

tice the negative log likelihood is usually minimized.

3 Results

Maximum likelihood was used to fit the zero inflated
Poisson, the one inflated Poisson and the zero deflated
and one inflated Poisson. Two models were considered,
constant X̂ for all i and X̂ varying according to a lin-
ear equation conditioned upon segment ground area,
X̂ = β0 + β1area where parameters β0 and β1 are the
intercept and slope and the independent variable is the
segment ground area. Estimates for π and θ were also
obtained as part of the maximization process. Param-
eter estimates are given in Table 2. Figure 4 shows
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Table 2: Summary statistics of maximum likelihood es-
timates for twenty stem mapped plots installed in Pinus
taeda and Pinus elliottii plantations, with error distri-
bution (Dist’) Poisson = P, Normal = N, Zero deflated
Poisson = 0P, One inflated Poisson = 1P and Zero de-
flated One inflated Poisson = 01P. β0 is the intercept
and β1 is the slope of the linear prediction equation in
segment ground area used to predict λ, while π is a mul-
tiplier used to deflate the Poisson probability of zero
trees per segment and θ is added to the probability of
one tree per segment, and L is the geometric mean like-
lihood for the indicated error distribution.

Dist’ β0 β1 π θ L

P 0.7131 0 0.3534

P 0.0 0.1060 0.3938

N 0.7131 0 0.3496

N 0.1202 0.0882 0.4194

0P 0.7131 0 0.2640 0 0.3754

0P 0.0151 0.1050 0.0808 0 0.4543

1P 0.7131 0 1 0.2830 0.3776

1P 0.0031 0.1117 1 0.4421 0.4507

01P 0.7130 0 1 0.2830 0.3776

01P 0.0151 0.1050 0.0809 0.0 0.4543

the resulting observed and estimated relative frequency.
All three distributions mimic the observed relative fre-
quency.

Of several potential predictor variables for mean trees
per segment, ground area of a given segment was shown
to be particularly informative as illustrated in Figure 5.
An exhaustive evaluation of the model is not provided,
due to a small sample size and correspondingly lim-
ited power to test significance of alternative predictor
variables. As segment ground area increases, so does
the number of enveloped trees identified from stem-
mapping. A linear model to predict trees per segment
from ground area was fitted for each distribution. The
parameter estimates along with geometric mean log like-
lihood are presented in Table 2. The Poisson gave the
poorest fit followed by the normal distribution. The zero
inflated Poisson, the one inflated Poisson and the zero
deflated and one inflated Poisson all provided superior
fits to the data as indicated by geometric mean likeli-
hood over 0.45.

Figure 4: Relative frequency of trees per segment across
20 stem mapped plots and 969 tree approximate objects
and fitted zero inflated Poisson, the one inflated Poisson
and the zero-deflated and one inflated Poisson.

Figure 5: Relationship between trees per segment and
ground area of a given segment.
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4 Discussion

It is interesting to note that the most likely distribu-
tion for the intercept only single mean model is the one
inflated Poisson, while the most likely distribution for
the linear model is the zero deflated and one inflated
Poisson. Overall, the simpler one inflated Poisson is a
good choice. By setting π equal to one in the derivation
of λ a simpler formula that does not involve the Lam-

bert W can be derived, namely λ = (X̂−θ)
(1−θ) . The methods

presented assume linearity in the predictor variable, but
results would suggest improvements could be made by
imposing constraints and considering non-linearity be-
tween the response and predictor variables, as demon-
strated in Figure 5. Addition of other predictor variables
are likely to further enhance accuracy of the fitted mod-
els. All procedures presented are amenable to inclusion
of multiple predictor variables and can be fit using op-
tim in R (R Core Team (2020), Appendix B). The R
program in Appendix B illustrates fitting the zero de-
flated one inflated Poisson, while the provided Excel file
illustrates fitting the one inflated Poisson by minimizing
the negative log likelihood with the Solver add-in.

5 Conclusions

Results corroborated findings from others that tree
count estimates derived from segmented ALS point
clouds are unlikely to identify every tree. Depending
on the quality of LiDAR data, and segmentation algo-
rithm, there may be zero inflation, deflation or other
modalities. Distributions novel to forestry and statis-
tics are given to provide modelers options for correcting
these biases which are likely to require evaluation and
testing specific to LiDAR collection projects. This re-
search demonstrates a failure of segmentation to posi-
tively identify every tree and the importance of making
corrections to avoid biased estimates of tree count and
derivative metrics such as stand merchantable volume.
Even when corrections are applied, the outcomes are
designed to be regionally unbiased, suggesting that es-
timates at the stand or segment level will still express
some degree of bias.
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6 Appendix

Appendix A: Derivation of the zero deflated and one inflated Poisson

We use the fact that the probabilities must sum to one to solve for δ:

∞∑
k=0

P (x = k) =πδe−λ + θ + δλe−λ + δ
∞∑
k=2

λke−λ

k!

=πδe−λ + θ + δλe−λ + δ
(
1− e−λ − λe−λ

)
=πδe−λ + θ + δλe−λ + δ − δe−λ − δλe−λ

=πδe−λ + θ + δ − δe−λ = 1

δ
(
πe−λ + 1− e−λ

)
=1− θ

δ =
1− θ

1 + πe−λ − e−λ

=
1− θ

1 + (π − 1) e−λ

We next derive the expected value or mean of the new distribution.

E(X) =
∞∑
k=0

kP (x = k)

=0

[
π(1− θ)e−λ

1 + (π − 1)e−λ

]
+ 1

[
θ +

(1− θ)λe−λ

1 + (π − 1)e−λ

]
+

(1− θ)
(1 + (π − 1)e−λ)

∞∑
k=2

kλke−λ
k!

=θ +
(1− θ)λe−λ

1 + (π − 1)e−λ
+

λ(1− θ)
[1 + (π − 1)e−λ]

∞∑
k=2

λk−1e−λ

(k − 1)!

=θ +
(1− θ)λe−λ

1 + (π − 1)e−λ
+

λ(1− θ)
[1 + (π − 1)e−λ]

∞∑
k=1

λke−λ

k!

=θ +
(1− θ)λe−λ

1 + (π − 1)e−λ
+

λ(1− θ)
[1 + (π − 1)e−λ]

(1− e−λ)

=θ +
(1− θ)λe−λ

1 + (π − 1)e−λ
+

λ(1− θ)
[1 + (π − 1)e−λ]

+
(1− θ)λe−λ

[1 + (π − 1)e−λ]

=θ +
λ(1− θ)

[1 + (π − 1)e−λ]

We will develop a prediction equation represented by X̂ that will estimate E(X). We make the substitution

E(X) = X̂ and solve for λ.

X̂ =θ +
λ(1− θ)

(1 + (π − 1)e−λ)

λ =
(X̂ − θ)

[
1 + (π − 1)e−λ

]
(1− θ)

=
(X̂ − θ) + (X̂ − θ)(π − 1)e−λ

(1− θ)

=
(X̂ − θ)
(1− θ)

+
(X̂ − θ)(π − 1)

(1− θ)
e−λ =

(X̂ − θ)
(1− θ)

+W

[
(X̂ − θ)(π − 1)

(1− θ)
e

(θ−X̂)
(1−θ)

]

Where W [x] is the Lambert’s W function. The Lambert’s W is useful in that the solution to x = a + becx is
x = a− 1

cW (−bceac).

mailto://strub@mcfns.com
http://mcfns.com


Strub and Osborne (2021)/Math.Comput. For.Nat.-Res. Sci. Vol. 13, Issue 1, pp. 29–35/http://mcfns.com 35

Appendix B: R code demonstrating modifications to the Poisson distribution

l i b r a r y (lamW)
# Load data f i l e \ h r e f {http :// mcfns . net / index . php/ Journal / a r t i c l e /view /13 .3/2021 .3 S}{data . csv } f o r stem mapped p l o t s
df = read . csv (” data . csv ”)
y = df$ tps
x = df$crownarea m

# zero d e f l a t e d and one i n f l a t e d Poisson
# a d d i t i v e i n f l a t i o n parameter theta g r e a t e r than zero
# m u l t i p l a t i v e d e f l a t i o n parameter p i g r e a t e r than zero
nLL . 0 D1I . Poisson <= f unc t i on ( pi , theta , est , obs ){
lambda <= ( est=theta )/(1= theta )+lambertW0 ( ( est=theta )* ( pi=1)
*exp ( ( theta=e s t )/(1= theta ))/(1= theta ) )
d e l t a <= (1= theta )/(1+( pi =1)*exp(=lambda ) )
L <= d e l t a * lambdaˆobs*exp(=lambda )/ f a c t o r i a l ( obs ) # Poisson adjusted f o r p i and theta
L . 0 <= pi *L [ obs==0] # d e f l a t e the zero obs e rva t i on s
L . 1 <= theta+L [ obs==1] # i n f l a t e the one obs e rva t i on s
L <= c (L . 0 ,L . 1 ,L [ obs>1]) # other ob s e rva t i on s remain the same
return(=sum( log (L ) ) ) # return the negat ive l og l i k e l i h o o d to be minimized by optim
}

# t h i s i s the func t i on that p r e d i c t s the mean t r e e s per segment
e s t . f r e q <= f unc t i on ( beta , x , obs ) {
e s t <= exp ( beta [ 1 ] ) + exp ( beta [ 2 ] ) * x
# pi must be between zero and one
p i <= 1/(1+exp ( beta [ 3 ] ) )
# theta must be between zero and one
theta <= 1/(1+exp ( beta [ 4 ] ) )
nLL <= nLL . 0 D1I . Poisson ( pi , theta , est , obs )
re turn (nLL)
}

beta <= c (=5.7959495 ,=2.28 , l og (1/0 .999 =1) ,0 .2325979)
beta <= c ( l og ( 0 . 1 2 01 6 ) , l og ( 0 . 1 1 1 5 ) , l og (1/0.001=1) , l og (1/0.001=1))
beta <= c ( =4 .2 , =2 .2 ,2 .4 ,0 .25)
beta <= c ( =5 .8 , =2 .3 ,4 .2 ,0 .23)
parms <= optim ( beta , e s t . f r eq , x = x , obs = y )

beta <= parms$par
parms <= optim ( beta , e s t . f r eq , x = x , obs = y )
beta <= parms$par
parms <= optim ( beta , e s t . f r eq , x = x , obs = y )
beta <= parms$par
parms <= optim ( beta , e s t . f r eq , x = x , obs = y )
i n t e r c e p t <= exp ( parms$par [ 1 ] )
s l ope <= exp ( parms$par [ 2 ] )
p i <= 1/(1+exp ( parms$par [ 3 ] ) )
theta <= 1/(1+exp ( parms$par [ 4 ] ) )
avg . l i k e l i h o o d <= exp(=parms$value / l ength ( y ) )
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