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SPATIAL ANALYSIS OF AIRBORNE LASER SCANNING POINT
CLOUDS FOR PREDICTING FOREST STRUCTURE
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Abstract. The arrangement of trees with respect to each other plays a role in various forestry decisions.
In this study, the arrangement of trees was summarized by three different structure indices. Their values
were determined from field measurements and predicted with the well-known k-nn estimation method using
data obtained by airborne laser scanning (ALS). ALS-derived predictions are often assisted by vertical
summaries of the pulse returns. Our goal was to identify spatial summaries of the ALS point cloud that
can improve predictions based on commonly used feature metrics. We explored the horizontal distribution
of the pulse returns through canopy height models thresholded at different height levels. We introduce
completely new metrics based on 1) the Euler number, which is the number of patches of vegetation minus
the number of gaps, and 2) the empty-space function, which is a spatial summary function of the gap
space. Data from a study site in Central Finland was available with circular field plots with 9 m radius.
We find that small sample plots can be challenging. Still, we present evidence that the use of spatial
feature metrics improves the prediction of forest structure indices and has potential for improvements for
other forest variables related to gap structures.

Keywords: Airborne laser scanning, canopy height model, empty-space function, Euler number,
forest resource prediction, spatial pattern of trees.

Background

The spatial structure of forest can be understood as
the arrangement of tree locations with respect to each
other. In forestry, the spatial structure plays an implicit
role for example in thinning, where the aim is to produce
a regular spatial pattern of trees in order to optimize the
use of space for the growth of trees (e.g. Packalen et al.
2013, Pukkala 1990). The need of (first) thinning is typ-
ically earlier in clustered stands than in regular or ran-
dom stands due to stronger competition between trees
for growth factors and the right timing of thinning can
have a great impact on growth and dynamics of a tree
stand. Therefore, reliable information about the spatial
structure of the forest could aid in the determination
of a stand’s treatment (Pippuri et al. 2012). In fact,
the spatial structure of forest could be valuable also in
other kinds of forestry decisions, related for example to
stratifying forested areas or locating field sample plots
(Packalen et al. 2013), see also Wang et al. (2020) and
references therein. However, often this information is
not available because the fieldwork for measuring the

spatial locations of trees can be rather laborious and
expensive.

There are a few studies that have aimed to classify
the spatial structure of forests to regular, random and
clustered forests utilizing remote sensing data. Uuttera
et al. (1998), for instance, applied individual tree seg-
mentation to high-resolution aerial photographs for this
purpose, but experienced difficulties especially with clus-
tered patterns of trees. Packalen et al. (2013) and Wang
et al. (2020) tried a method based on individual tree de-
tection as well. Packalen et al. (2013) and Pippuri et al.
(2012) further aimed at classifying and predicting the
spatial arrangement of trees with an area based approach
for airborne laser scanning (ALS) data. The results of
Pippuri et al. (2012) were promising, but Packalen et al.
(2013) concluded that particularly the detection of clus-
tered patterns appears to be difficult. Wang et al. (2020)
studied the tree top patterns obtained from dense ALS
data (with average pulse density 15 or 26/m2).

Often the ALS-assisted forest inventories utilize the
area-based approach that can be used even with low
resolution ALS data where individual trees cannot be
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detected adequately. In this approach, different feature
metrics calculated from the 3D ALS point cloud have
been used to classify the field plots to regular, random
and clustered in the works mentioned above. Prior to
predicting, the field data used for training the algorithm
has been classified as well. A usual approach is to sum-
marize the structure of the field data from the complete
set of locations of the trees in a field plot by summary
functions, such as the Ripley’s K function (Ripley 1976),
or by single valued indices such as the aggregation index
(Clark and Evans 1954). The function or index value
is then compared to the reference arrangement called
complete spatial randomness (CSR) or Poisson forest to
deduce whether the pattern of trees can be regarded as
random or it exhibits regularity or clustering (see e.g.
Illian et al. 2008, Tomppo 1986).

The ALS feature metrics that are used in the area-
based approach typically summarize the 3D point cloud
vertically where examples are height, standard deviation
or skewness of first returns (see e.g. Tomppo et al. 2017,
Tuominen et al. 2018, 2017). However, prediction of spa-
tial forest structure by the area-based approach can pre-
sumably benefit from metrics that summarize the spatial
or horizontal distribution of the pulses. In the litera-
ture, there are such metrics for summarizing the spatial
point cloud by describing the patch structure of thresh-
olded canopy height models (CHMs) or by measuring
the canopy complexity in different ways, see e.g. Kane
et al. (2011, 2008), Li et al. (2014), Zhang et al. (2017)
and the references therein. Pippuri et al. (2012) and
Packalen et al. (2013) also utilized metrics constructed
from a thresholded CHM. In order to create a thresh-
olded CHM, Pippuri et al. (2012) set the threshold level
to 5 m above ground, where pulse return values below
the threshold were declared as gap and those above as
canopy patch. Packalen et al. (2013) chose instead an
adaptive threshold based on the maximum height of the
CHM, which on average set the threshold to about 70%
of the maximum height. Both Pippuri et al. (2012) and
Packalen et al. (2013) used horizontal “landscape” met-
rics such as the mean and standard deviation of the size
of patches.

In this work, we revisit the prediction of the spatial
structure of boreal forest utilizing ALS data in the area-
based approach. First, we propose and compare three
different indices for summarizing the spatial structure of
the field data. Two of these indices are based on spa-
tial summary functions, namely the Ripley’s K function
and the so-called empty-space function (see e.g. Illian
et al. 2008), which are commonly used to describe the
structure of spatial point patterns. In addition to these
rather complex spatial indices, we consider a crude mea-
sure for clustering, namely the aggregation index (Clark
and Evans 1954). By using these indices we study the

spatial forest structure on a continuous scale, rather
than discretely as considered by Pippuri et al. (2012)
and Packalen et al. (2013). Second, following the area-
based approach, we predict the indices utilizing common
ALS feature metrics from the practice of the manage-
ment inventory (Tomppo et al. 2017) and spatial ALS
features extracted from thresholded CHMs. To the best
of our knowledge, some of the spatial ALS features are
introduced for the first time in this context, namely the
Euler number (the number of vegetation patches minus
the number of gaps) and metrics based on the empty-
space function also known as the spherical distribution
function. Instead of thresholding the CHM only once
or twice, we suggest to use several thresholds at dif-
ferent height levels. Finally, we illustrate the developed
methodology on fitting prediction models for an example
of field and ALS data from a study region in Central Fin-
land. We show that the spatial features are useful and
carefully discuss the challenges related to using rather
small circular field plots with 9 m radius for model fit-
ting.

Materials

Field data

A total of 2469 field plots was measured on a study
site in Central Finland in 2013 following a systematic
cluster sampling (see Figure 1). The land area was 5700
km2, of which 4310 km2 were forestry land including also
poorly productive forest land and unproductive land as
defined in the Finnish national forest inventories and
management inventories. The topography is relatively
flat with elevation values generally between 100 m and
200 m above sea level. Belonging to the southern and
middle boreal vegetation zone, the forests are mainly
coniferous, where Scots pine (Pinus sylvestris L.) and
Norway spruce (Picea abies [L.] H. Karst.) are the most
common species. The principal silvicultural system in
the region has been even-aged management (Tomppo
et al. 2017, Tuominen et al. 2017).

All trees with diameter at breast height (dbh) greater
than 4.5 cm were measured for fixed radius plots of 9 m
(ca. 254 m2). More details on all measurements made
can be found in Tomppo et al. (2017).

In this study, a subset of plots within single stands
with at least ten trees with dbh > 4.5 cm and available
ALS data were considered and only the location, and dbh
of the trees were included in the analysis. This resulted
in a total number of 1161 plots and 34965 measured
trees (see Figure 1). Table 1 summarizes forest charac-
teristics of the selected plots organized according to de-
velopment class, which describes the development phase
of the growing stock in relation to the expected rota-
tion determined in the field (Tomppo et al. 2011, p. 40).
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Figure 1: Location of the study site in Central Finland and locations (dots) of the 1161 plots used in the study
(contains map data from the National Land Survey of Finland Topographic Database 02/2021).

Most plots (92%) were classified as either young thinning
stands (Class 1), advanced thinning stands (Class 2), or
mature stands (Class 3). A young thinning stand has a
young growing stock at the thinning cuttings stage. Ad-
vanced thinning stands’ growing stock is older and pole
size larger, and the growing stock of a mature stand is ei-
ther old or large enough for a regeneration cutting from
the management point of view. The rest of the stands
(collectively referred to as others in Table 1) were either
regeneration or seedling stands or the information on the
class was missing.

Validation data

In the same region in Central Finland, 30 additional
plots were measured in 2014 for the purpose of model
validation. The plots were of size 32 m × 32 m and
subdivided into four subplots of size 16 m × 16 m (256
m2), matching approximately with the size of the field
plots. The plots were selected at locations where estima-

tion with ALS usually results in large root mean squared
errors (RMSEs) (Tomppo et al. 2017). Almost all valida-
tion plots were thinning stands, of which 17 were young
(Class 1) and 10 were advanced (Class 2). Even though
also smaller trees were measured, only trees with a dbh
greater than 4.5 were included in a validation study to
match the 2013 data.

ALS data

The ALS data were acquired by Blom Kartta Oy, Fin-
land, for the operative management inventory by the
Finnish Forest Centre between 28 June and 27 August
2013. The Piper Navajo airplane and the Optech Gemini
ALTM scanner were used with the following parameters:
flight altitude 1730 m, strip overlap 20%, pulse frequency
70,000 Hz, scanning frequency 37 Hz, half scan angle 20
degrees, pulse density 0.89/m2, and maximum number
of observed pulse returns 4. For the analysis presented
here, only the ALS data at the field plots were used.
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Development class
1: young 2: advanced 3: mature other

No. plots 305 582 183 91
Mean diameter, cm 10.46 (2.08) 15.06 (3.18) 17.09 (4.42) 7.68 (1.66)
Basal area, m2/ha 14.24 (6.06) 21.09 (6.80) 25.90 (9.23) 3.68 (1.90)
Pine, % 0.67 (0.36) 0.56 (0.33) 0.37 (0.31) 0.72 (0.40)
Spruce, % 0.14 (0.23) 0.24 (0.26) 0.38 (0.31) 0.17 (0.32)
Broadleaved, % 0.19 (0.26) 0.20 (0.20) 0.24 (0.24) 0.11 (0.25)
No. of stems/ha 1544 (701) 1128 (575) 999 (515) 711 (249)

Table 1: Average values (standard deviations) of the forest variables calculated from trees with dbh ≥ 4.5 cm on 1161
plots summarized for development classes young thinning stands (1), advanced thinning stands (2), mature stands
(3), and others (regeneration and seedling stands as well as unknown). The species percentages refer to proportions
of basal area per species of the total basal area per plot.

Methods

The presented methodology can be divided into three
different pipelines. The first is for calculating the for-
est structure indices from ground level measurements,
the second covers the processing of the ALS point cloud
data, and the third deals with the model fitting (see
Figure 2).

Prior to introducing the studied forest structure in-
dices, the ALS feature metrics, and the modelling steps,
we first describe necessary background for the spatial
analysis. Finally, we explain how the forest structure
indices are predicted for field plots using the ALS data.

All computations were conducted with the statistical
software R (version 3.4.4.) and mainly using the pack-
ages spatstat (Baddeley et al. 2015), spatialgraphs
(Rajala 2017), and lidR (Roussel and Auty 2018).

Preliminaries on spatial statistics

In this application, tree locations are mathematically
expressed as a point pattern with a finite number of n
trees observed on a field plot W ⊂ R2. Each observed
point pattern is interpreted as a realization of a planar
point process, which is assumed to be translation and
rotation invariant with intensity λ. Here, λ can be in-
terpreted as the tree density per square meter.

A point pattern is called completely spatially ran-
dom (CSR) if there is no interaction between the points.
Comparing to the CSR case, interaction between the
points may result in either larger inter-point distances
and regular patterns or smaller inter-point distances and
clustered patterns. Regularity and clustering may also
occur in the same pattern, but at different distances.
Due to the small field plot size in this study, distances
only up to 4.5 meters were taken into account and, thus,
the spatial structure of forests, clustering or regularity,
was considered only within this range.

Let us now consider a random set Ξ of discs with a
random radiusR centered at random locations forming a
point pattern in an observation window W . For instance
in this application, Ξ consists of the canopy patches.
The empty-space function F then gives the cumulative
distribution function of the distance r from an arbitrary
location s in the ‘empty’ space W \Ξ to the nearest point
in the random set Ξ (see Figure 3).

In the case of the Boolean model, which serves as a
reference model with discs located uniformly on W , a
theoretical F -function for all distances r > 0 is given by
(Chiu et al. 2013, pp. 87)

Ftheo(r) = 1− exp(−λπr(2E[R] + r)), (1)

where the area fraction of the discs p = 1 −
exp(−λπE[R2]) can be used to calculate the expected
number of disc centers per unit area (λ). Thus, λ in (1)
can be replaced by − log(1− p)/(πE[R2]).

The empty-space function F can be defined for a point
pattern accordingly. The theoretical F -function in the
CSR case is

Ftheo(r) = 1− exp(−λπr2) (2)

for distances r ≥ 0. The point density λ is usually esti-
mated by the number of points observed in W divided
by the area of W , i.e. n/|W |. In order to obtain an unbi-
ased estimate for the empty-space function, the spatial
Kaplan-Meier estimator was used to correct for unob-
served points outside the observation window W (Bad-
deley and Gill 1997).

The empty-space function F is also often called the
spherical contact distribution function and denoted by
Hs (Chiu et al. 2013, pp. 42, 87, 115).

Forest structure indices

Aggregation index The spatial forest structure has
long been quantified by the aggregation index R (Clark
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Forest structure indices

Aggregation 
index R

L-function LM

KL-type 
divergence of 
empty space 
function FD

Ground level measurements

Field data for training
Validation data for 

testing

ALS feature metrics

Vertical features Spatial features

ALS point cloud

Pulse return values
Thresholded canopy 

height models

Investigating the fit of the ALS prediction models to field measurements

Change in RMSE when 
including spatial features

Classification of spatial structure Testing on the validation data

ALS-based forest variable estimates for the forest structure indices

R LM FD

Prediction models based on selected ALS features

Feature selection using the k-nn method on the training data

Vertical features only Vertical and spatial features

Figure 2: Flowchart over the methodology divided into three pipelines. In the first, ground level measurements
from the field data (training set) and validation data (testing set) are summaries into three different forest structure
indices. The second pipeline covers the processing of the ALS point cloud data based on the actual pulse return
values and thresholded canopy height models. The latter is used to define new spatial features. Both spatial features
and features from vertical summaries of the pulse return values make up for the ALS feature metrics used in the
prediction model fitting. The third pipeline includes the model fitting steps of feature selection, obtaining estimates
of the forest structure indices and goodness-of-fit analyses.
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×s

W

Ξ

Figure 3: Schematic illustration of the random set Ξ
(e.g. canopy patches) in an observation window W and
an arbitrary location s in W \Ξ and its shortest distance
to Ξ (red solid line).

and Evans 1954). It gives information about the spa-
tial structure of trees with locations (x1, . . . , xn) based
on their nearest neighbors nn(xi), i = 1, . . . , n, and is
estimated by

R =
2√
n|W |

n∑
i=1

‖xi − nn(xi)‖, (3)

where R ≈ 1 in the CSR case, R > 1 indicates regularity
and R < 1 clustering. In theory, the aggregation index
can obtain values between zero and 2.1491. For the plots
in Figure 4, Rreg = 1.17 and Rclu = 0.76.

L-function A commonly used second-order charac-
teristic for point patterns is Ripley’s K-function (Rip-
ley 1976): λK(r) gives the expected number of points
(trees) of X within a ball b(o, r) without counting o itself
given that there is a point of X in o.

The L-function is a variance stabilizing transforma-
tion of the K-function and is given by

L(r) =

√
K(r)

π
for r ≥ 0. (4)

In the CSR case, L(r) − r = 0 for all r ≥ 0. This fact
can be used in a test for CSR based on the test statistic

τ = max
r≤rt
|L̂(r)− r| (5)

with Ripley’s isotropic edge corrected estimator L̂ and
user-specified maximum radius rt. The CSR hypothesis
can be rejected at a 5% significance level if

τ >
1.45

√
|W |

n
, (6)

where |W | denotes the area of W (Chiu et al. 2013, pp.
57 f., 139 ff.). The rule in (6) may depend on the choice
of rt if chosen too small and it deserves mentioning that
80% of the values for τ were obtained at inter-point dis-
tances r smaller than 3.47 m for the 2013 data. Fur-
thermore, a sensitivity analysis in the validation data
from 2014 with rt ranging from 3 to 11 meters showed
no important differences to the final choice of rt = 4.5
m.

In order to determine the degree of regularity or clus-
tering in the pattern, we used LM = L̂(rτ )− rτ , where
rτ denotes the distance at which the maximum differ-
ence from zero occurs, and negative and positive values
indicate regularity and clustering, respectively. For the
plots in Figure 2, LMreg = −1.03 and LMclu = 1.31.

KL-type divergence In addition to the L-function,
we define a new forest structure index based on a
Kullback-Leibler-type (KL-type) divergence of the esti-

mated empty-space function F̂ from its theoretical coun-
terpart F̂theo for point patterns (2) as

FD = DKL(F̂‖F̂theo) =

∫ rt

0

F̂ (r) log

(
F̂ (r)

F̂theo(r)

)
dr,

(7)
for a chosen upper limit rt > 0 of considered distances.
DKL is a simpler version of the cumulative Kullback-
Leibler information (Crescenzo and Longobardi 2015).
We refer to this new index FD as the KL-type diver-
gence. FD ≈ 0 in the CSR case, FD > 0 indicates
regularity and FD < 0 clustering. For the plots in Fig-
ure 4, FDreg = 23 and FDclu = −33.

ALS feature metrics

The ALS feature metrics included in our study were
divided into two groups. The first group includes the
vertical features (features 1-62 in Table 2). The second
group is formed by the spatial features extracted from
thresholded CHMs (features 63-98 in Table 2) including
new features (features 79-98) based on the Euler number
and empty-space function F .

The ALS feature metrics were determined for the cir-
cles with a radius of 9 m covering the respective field
plots. They were calculated from the CHMs that were
first determined for slightly larger circles, with a buffer
zone of 3 m, using the R package lidR (Khosravipour
et al. 2014, Roussel and Auty 2018). Beforehand, first
pulse returns below 1.3 m, but above the ground, were
set to ground level.

Definition of spatial ALS features

The spatial ALS features are defined based on a
thresholded CHM. In particular, each CHM was divided
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Vertical features
1 Height of the canopy
2 Minimum height of first returns
3 Maximum height of first returns
4 Mean height of first returns
5 Standard deviation of heights of first returns
6 Skewness of heights of first returns
7 Kurtosis of heights of first returns
8 Width of range of heights of first returns
9-15 The features similar to 2-8 for last returns
16 Proportion of canopy returns, all pulse returns
17-27 Percentiles (5, 10, 20, . . ., 90, 95%) for first returns
28-38 Same features as 17-27 for last returns
39-49 Cumulative proportions of foliage returns 0-5, 5-10, 10-20, . . ., 90-95%
50-60 Same features as 39-49 for last returns
61-62 Mean intensity (first and last returns)
Spatial features at 80, 60, 40, 20% levels of the maximum height
63-66 Number of patches
67-70 Average size of patches in number of pixels
71-74 Standard deviation of size of patches
75-78 Average number of same pixel type in a 4-neighbourhood
79-82 Euler number for TCHMs
83-86 Integrated deviation of F -function from theoretical reference
87-90 KL-type divergence of F -function from theoretical reference
91-94 Pairwise integrated difference of F -functions between TCHMs
95-98 Pairwise KL-type divergence of F -functions between TCHMs

Table 2: ALS feature metrics calculated on the basis of common summaries of pulse return values (vertical features)
and spatial information from thresholded canopy height models (TCHM). The foliage returns were in the range of
the height of the first and last returns, respectively.

into two regions according to a threshold of q ·hmax for
q = 80, 60, . . . , 20% given the maximum height hmax of
the CHM. Values above the threshold formed the canopy
patches at height level q. Values below the threshold are
referred to as gaps or empty space.

Following Packalen et al. (2013) and other work on
quantifying canopy patch characteristics, we calculated
the number of patches (features 63-66 in Table 2), the
average patch size (features 67-70), standard deviation
of the patch size (features 71-74), and the average num-
ber of pixels in a 4-neighborhood of the same type as the
focal pixel (either patch or gap pixel, features 75-78).

We additionally included the Euler number (features
79-82) to the set of features. It gives the number of
canopy patches minus the number of gaps and there-
with it is an easy measure of the canopy complexity.
As an illustration for why spatial ALS features at dif-
ferent height levels and including the Euler number can
be meaningful especially in combination, let us consider
the regular and clustered plots presented in Figure 4.
All plots have approximately the same number of trees
(around 25) and almost no gaps at the 80% height level,

but the regular pattern of trees has more canopy patches
(15) than the clustered one (8). At the 40% height level,
the largest difference between the two plots can be ob-
served in the Euler number. Due the differences in spa-
tial forest structure, the regular plot has only one canopy
patch and shows many gaps resulting in a very low Euler
number of -14 whereas there are still 4 canopy patches
on the clustered plot and only a few gaps resulting in an
Euler number of -3.

In order to include information about the gaps or
empty space, we introduce spatial ALS features based
on the empty-space function F . For each thresholded
CHM, F was estimated as the empirical cumulative dis-
tribution function of distances from all empty space pix-
els to the nearest canopy pixel. The estimator for Ftheo

was based on equation (1), where the random radius R
was determined by the average of the largest distance
between any two pixel of the canopy patches.

We used two alternative ways to summarize differ-
ences between the estimated F -function and its theoret-
ical counterpart to single numbers. Namely, we consid-
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Figure 4: Examples of canopy height models (CHM) and thresholded CHMs for a regular (top row) and a clustered
(bottom row) pattern of trees. The thresholds were selected at 80% and 40% of the maximum height (hmax) of each
CHM. The points of the patterns of trees on the left have been scaled according to their estimated tree height.

ered the integrated squared difference

DI = DI(F̂ , F̂theo)

= sgn ·
∫ rt

0

(F̂ (r)− F̂theo(r))2dr (8)

and the proposed KL-type divergence DKL (see equa-
tion (7)) with a chosen upper limit rt > 0 (see Section ).
The larger the absolute value of DI or DKL, the larger
the difference to the CSR case in terms of space around
a random location in the empty space. To make a differ-
entiation between regularity and clustering possible also
by DI , the integral in (8) was multiplied by the sign of
the maximal difference to Ftheo (sgn). Thus, for a height
level q, positive and negative signs of both feature met-
rics relate to regular and clustered patterns of trees that
have heights larger or equal to q · hmax, respectively.
It should be noted that the values of DKL tend to be
generally smaller in their absolute value than the values
of DI .

The summaries DI and DKL were also used to com-
pare height layers with each other (features 91-98). It
can be expected that the higher layers appear more regu-
lar than the lower layers, but that the difference is larger
for clustered than for regular plots. For instance, for the
example in Figure 4, DKL(F (q=0.8)‖F (q=0.4)) ≈ 40 for
the regular example, but 83 for the clustered plot. This

indicates that the upper layer appears more regular than
the lower layer in both cases, but that the difference is
larger for the clustered plot.

Feature selection and prediction of indices

Feature selection and prediction of the forest structure
indices were carried out using a genetic algorithm along
with the k-nearest neighbor method (k-nn method) as
described by Tomppo and Halme (2004) and Tuominen
et al. (2018, 2017) for continuous and discrete variables
respectively.

In a preceding step, all features were standardized to
have the same variation. Then the genetic algorithm im-
plemented in the Genalg package in R (Willighagen and
Ballings 2015) was used to select the relevant features
fl,·, l = 1, . . . ,m, and to determine the weights ωl for
them according to a fitness function based on plot-level
RMSE and absolute bias, which we set to have equal
importance. The selection of the optimal k among the
tested values (3-6) was included in the routine. The for-
est variable y of the plot p was predicted using the set
of k nearest neighboring plots Ip with p /∈ Ip:

ŷp =
∑
i∈Ip

wiyi with wi = d−gi,p /
∑
j∈Ip

d−gj,p , (9)
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Häbel et al. (2021)/Math.Comput. For.Nat.-Res. Sci. Vol. 13, Issue 1, pp. 15–28/http://mcfns.com 23

where the weights wi were determined by the distance
between each neighbor i and the plot p in the feature
space, namely

d2i,p =
m∑
l=1

ω2
l (fl,i − fl,p)2, (10)

and the factor g. Different values for g (0-3) were tested,
where g > 0 implies that neighbors with smaller dis-
tances get larger weights. The final values for k and g
are given in Table 3.

Results

Relevance of spatial features

The spatial features were sufficiently correlated with
the field data, such that seven spatial features were se-
lected by the genetic algorithm for R as well as for FD
and two for LM . The spatial features made up 47%,
39%, and 22%, respectively, of all selected features. The
spatial features selected most often were the average
number of pixels of same type in a 4-neighborhood (fea-
tures 75-78 in Table 2) and F -function based features
(features 83-98 in Table 2). The integrated difference
measure DI in (8) was chosen mostly for the compari-
son to the theoretical F -function on the 80, 40, and 20%
height level and the KL-type measure DKL in (7) for
the comparison of the F -function of two different height
levels.

Comparing the predicted values of the indices ob-
tained with spatial features to predicted indices obtained
without them, we observed a 8.4% reduction of RMSE
for the forest structure index FD. There was a small
improvement for the other variables R and LM as well,
where the RMSE was reduced by 3.3% and 2.1%, re-
spectively.

Prediction of forest structure indices

The spatial features improved the predictions and all
estimates of the studied forest structure indices were
practically unbiased. However, the RMSEs were rather
large (see Table 3).

There was a tendency to overestimate the negative
values and underestimate the positive values, i.e. more
patterns of trees appeared random and fewer forest were
classified as regular or clustered based on the ALS data
(see Figure 5).

Classification of forest structure

To compare our results to Pippuri et al. (2012) and
Packalen et al. (2013), the forest structure indices were
used in classifications of field plots into regular, random,
and clustered patterns. In contrast to these previous

Index g SD RMSE Bias
R 0.9 0.202 0.178 0
LM 0.8 1.018 0.843 0
FD 1.8 21.411 16.453 0

Table 3: Outcome of the genetic algorithm for feature
selection and prediction of the forest structure indices
R, LM , and FD for the 2013 data including spatial fea-
tures. In all cases k = 6 neighbors were considered, but
different scaling values g were given to the weights. SD
is the standard deviation of the field data-based values.

works, we used simple cut-off values in a more practical
approach. These cut-off values were 0.85 and 1.15 for R
and ± 15 for FD. For LM , we used the rule given in (6).
The overall accuracy was 62.2% for R, 60.6% for LM ,
and 59.3% for FD with a Cohen’s kappa of 0.31, 0.14,
and 0.23, respectively. Due to the relatively simple spa-
tial structure of tree center points on mature field plots,
it was expected to obtain the best results for all consid-
ered measures of regularity for this development class.
Interestingly, R and FD obtained their highest values for
advanced thinning plots, whereas LM performed best on
mature plots. All in all, the overall accuracy, Cohen’s
kappa, and differentiation of clustered and regular pat-
terns were the best for R followed by LM . However,
more regular plots were missclassified as clustered (and
vice versa) than for FD.

Validation study

The data from 2014 was used in a validation study.
The features and weights selected for the 1161 circular
plots measured in 2013 were used to predict the for-
est structure indices of the 120 subplots of size 256 m2

measured in 2014 by the k-nn method. When classify-
ing the spatial forest structure with the same rules as
applied to the 2013 data (see Section ), the overall ac-
curacy was 55.8% for R, 39.2% for LM , and 68.3% for
FD. The values for Cohen’s kappa were 0.07, 0.01, and
0.01, respectively. Upon recalling that LM performed
best for mature plots and that the validation data only
contained thinning plots, it is not surprising that the
overall accuracy for LM was lower than for the 2013
test data. Also not surprising, FD achieved the highest
overall accuracy as this summary appeared to perform
best for detecting clustered forests. However, with the
ALS-based FD no clustered plots and only four regular
were classified correctly, but 78 out of 94 (83%) random
plots were in agreement with the field data classification.
The ALS-based R and LM prediction classified around
62% of the regular plots correctly, but failed to detect
any prominent number of clustered patterns.
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Figure 5: ALS-based forest variable estimates versus field data-based values for the forest structure indices R, LM
and FD.

Discussion

The primary objective of this study was to identify
novel spatial ALS features that can improve the predic-
tion of spatial forest structure. The relevance of our pro-
posed spatial features was evaluated by examining their
correlation to the field data measured as proportion of
selected features. Furthermore, estimates based on pre-
diction models with and without spatial features were
compared in term of their RMSEs. The goodness-of-fit
was further analyzed by plotting the predicted versus
the field-based values of the forest structure indices and
by studying confusion matrices of classifications derived
from the estimates. As a secondary objective, we ex-
amined challenges related to small field plots and low
resolution ALS data. The following discussion focuses
first on the classification of spatial forest structure into
regular, random, and clustered arrangements of trees.
Then, the focus is shifted towards the new spatial fea-
tures and what type of ALS metrics appear best for the
prediction and classification.

Spatial forest structure classification

The three field data-based classifications agreed on
205 regular, 373 random, and 64 clustered patterns for
the field data, which means only a 44% agreement and,
hence, shows that the ground truth of the forest struc-
ture classification differs for each forest structure index.
Classifying the original 32 m × 32 m field plots in an
additional significance test for complete spatial random-
ness with the global envelope test based on the F - and
Ripley’s K-function (Mrkvička et al. 2017, Myllymäki
et al. 2017, Myllymäki and Mrkvička 2020), the CSR
hypothesis was rejected for all plots leading to the same
classification as with FD. Testing the 16 m × 16 m
subplots, however, 69 regular, 42 random patterns, and
9 clustered patterns were obtained. Figure 6 shows this
phenomena more precisely: it shows for the proportion

of rejections of CSR among 32 circular sample plots with
radius 5-16 m placed in the centre of the 32 m × 32 m
plots.
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Figure 6: Proportion of rejections of the CSR in 32 cir-
cular sample plots with different radius. See text for
details. The vertical line indicates the 9 m radius of the
field plots used in the main study.

The increasing trend along the radius means that the
larger the plot size, the better a pattern can be deduced
to deviate from the CSR case. This is a common feature
of statistical tests. These classification and test results
lead to two conclusions. First, the quality of the dif-
ferentiation of regular and especially clustered patterns
from random patterns depends on the field plot size.
Second, among the classifiers studied here no index was
best for detecting both regular and clustered patterns
at the same time. R and LM appeared more suitable
for regular patterns and FD for clustered when the field
plot was a circular plot with 9 m radius.
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We had not expected that the aggregation index R
would perform well in the classification of the 2013 data
as it is a rather crude summary of the spatial distri-
bution. In fact, this simplicity might facilitate its pre-
diction, especially for small field plots. The validation
study has shown, however, that even though R was pre-
dicted more accurately, it may not be the best classi-
fier for the spatial structure of trees in all possible for-
est scenarios especially with clustered patterns of trees.
Therefore, we expect that better results may be obtained
with FD or other summaries for larger field plots. Our
study showed that quantifying clustering and regularity
of forests from small field plots is itself a difficult task.
It is not only statistically difficult to separate clustered
and regular forests from CSR based on a pattern of only
a few trees, but also different indices can lead to different
classifications.

Spatial ALS features

In this study, the spatial ALS features describing the
canopy complexity were the most informative. The
empty-space function based feature metrics proved to
be a relevant addition to the 4-neighborhood based sum-
mary inspired by Packalen et al. (2013) (features 75-78
in our Table 2) as both were selected by the genetic al-
gorithm used in the forest variable prediction. In a side
study not presented here, we implemented the original
set of features by Packalen et al. (2013) (their Table
2), but found that merging the neighborhood counts for
patch and gap pixels into one feature led to smaller RM-
SEs. We also found that the Euler number was selected
more often, together with the number of patches (fea-
tures 67-70), if features 75-78 were not included. Conse-
quently, the Euler number in combination with the num-
ber of patches appeared to contain valuable information
for the prediction of the studied forest structure indices,
but the same information was apparently better cap-
tured by the the 4-neighborhood based features in our
data. In the same side study, we further included spa-
tial ALS features to predict other forest variables such as
breast-height diameter distributions, development class
and species mingling. Not surprisingly, the species re-
lated forest variables were poorly predicted with and
without spatial ALS features. Even though, the generic
algorithm picked spatial ALS features as well, no promi-
nent improvement was achieved compared to a predic-
tion without them. On the other hand, we obtained
small improvements in RMSE for the structural vari-
ables with using the spatial features.

The spatial ALS features were selected by the genetic
algorithm for the prediction in the k-nn method of all
studied forest structure indices. The original aim of
this study was to predict even the degrees of cluster-

ing and regularity. Hence, we summarized the spatial
forest structure by the continuous indices. However, it
appeared that this task was a bit too ambitious given
the relatively small field plots. Larger plots should re-
sult in smaller RMSEs. It seems that the size of the field
plots used for training the algorithm should preferably
be larger than 256 m2 if aiming at prediction of forest
structure variables similar to those considered here. As
forestry decisions are often done for stands with uniform
structure, it could be interesting to study the spatial
structure for forest stands, instead of field plots of fixed
size (see e.g. Tuominen and Haapanen 2011).

Packalen et al. (2013) also used the so-called L-
function in the classification rule of the field data. The
resolution of their ALS data was slightly lower, but still
comparable, and they used a smaller number (79 in to-
tal) of larger plots of size 20 m × 20 m and 30 m ×
30 m. Still, we obtained comparable results with those
obtained by the AREA method in Packalen et al. (2013)
for the 2013 data.

Pippuri et al. (2012) also had slightly lower resolution
ALS data and chose the so-called (spatial) tN -index for
the classification of 28 microstands in Southern Finland
of sizes between 0.2 and 0.7 ha. They achieved bet-
ter classification results, however, this could be due to
the large size of their field plots and greater differences
in tree density between regular and clustered patterns
compared to our study.

All of the mentioned work with predicting spatial for-
est structure employed rather low resolution ALS data.
Given that this was the case, and that the forest struc-
ture seemed to be more accurately estimated for ad-
vanced thinning plots than mature plots, one of the rea-
sons why regular plots have been missclassified as clus-
tered could be the large canopies of mature trees which
may have led to a patch structure resembling a clus-
tered pattern. On the other hand, the main reason for
clustered plots being missclassified as regular plots ap-
peared to be an extremely large variation in tree size,
where small trees where covered by large trees resulting
in a gap structure of a regular pattern. Higher resolution
ALS data might lead to better results, although similar
problems exist even then.

All in all, the presented study can be interpreted as a
pilot study on these aspects, giving indications for future
studies. It would be interesting to investigate the useful-
ness of the spatial features at several height layers in the
future not only for spatial structure indices using larger
field plots, but also for other forest variables related to
structural properties of the forests horizontally and ver-
tically (see e.g. Sverdrup-Thygeson et al. 2016). After
appropriate validation with the field data, wall-to-wall
ALS data could be used to predict the spatial structure
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in a complete study region (see e.g. Luther et al. 2019,
Schumacher and Nord-Larsen 2014).

Conclusion

New spatial ALS features were found for the predic-
tion of forest structure variables in ALS-assisted inven-
tories. Their application was focused on the predic-
tion and classification of the spatial structure of forests.
For the classification, three different spatial summary
statistics referred to as spatial forest structure indices
were used and their properties discussed. In general,
we can recommend to include spatial ALS features from
CHMs thresholded at more than one height level. For
our data, relatively complex features were most informa-
tive that describe the spatial structure of the gaps with
the empty-space function or that take the pixel type in a
4-neighborhood into account. The empty-space function
appeared to be especially useful as a measure of differ-
ences in the gap structure at two different height levels.
A simple alternative to describe the canopy complexity
is offered by the Euler number, which is the number of
vegetation patches minus the number of gaps.

This study has shown the potential of spatial analysis
of ALS point clouds through CHMs thresholded at sev-
eral height levels. Concurrently, there is a need for fur-
ther investigation with higher resolution data or larger
sample plots. Furthermore, in order to find the best
alternatives for spatial structure classification of forests
for certain needs, e.g. for finding clustered plots with a
need of thinning, it would be interesting to compare the
classifications given by different indices to classifications
made in the field in future studies.

In conclusion, the presented methodology for spatial
ALS features is practical and general enough to be ap-
plied to other forest variables such as conventional forest
inventory attributes and different three-dimensional re-
mote sensing scenarios.
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