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Xingdong Li1,3, H. Gao1, C. Han1, Y. Wang1, T. Hu2,3, L. Sun2,3∗, Y. Guo1∗

1 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China;
2 College of Forestry, Northeast Forestry University, Harbin 150040, China;

3 Northern Forest Fire Management Key Laboratory of the State Forestry and Grassland Bureau,

Northeast Forestry University, Harbin 150040, China

Abstract. Forecasting of forest fire area is of great significance to effectively control the spread of
forest fire. In this paper, the forest fire spreading velocity model and the forest fire spreading simulation
technology based on huygens principle are used to estimate the forest fire area. Firstly, binocular camera is
used to collect the firing state data of wild forest fire, and segment the firing image, extract the firing line,
locate the firing line and calculate the three-dimensional coordinates of the firing line pixels according to
perspective projection model. Secondly, the forest fire spreading velocity model based on Wang Zhengfei’s
model is redesigned. The model parameters of forest fire area were optimized by gradient method. The
prediction accuracy is much higher than that of the model before optimization.
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1 Background

The frequent occurrence of forest fires has attracted
great attention in recent years. Last November, a fire in
California destroyed more than 19,000 buildings, killed
about 85 people, damaged more than 60,000 hectares
and burned the small town of paradise to the ground; In
August this year, an even more shocking fire broke out
in the amazon rainforest. As of this writing, the number
of amazon forest ignition points reached 75,336, and the
fire area has exceeded 800,000 hectares. How to better
understand the fire, predict the fire, prevent and control
the fire has become an increasingly urgent problem.

Since the beginning of the 20th century, researchers
in different disciplines (e.g., Milios et al. 2018, Willson
et al. 2019) have carried out various projects to study
the main factors affecting forest fire behavior. Based on
the statistical analysis of a large number of observations
and experimental data, a forest fire spreading model was
established based on the physical processes of chemi-
cal change and heat transfer of forest fire combustion.
In recent years, due to the rapid development of com-
puter technology, the forest fire spread modeling has ad-
vanced to computationally intensive spatial simulation
modeling (Wang et al., 2013). Because of the complexity

of forest fire spread and the influence of many factors,
it is very important to us the video image to monitor
the forest fire for extracting forest fire characteristics
and predicting its spread. Based on image vision, Han
(2017) used the background subtraction motion detec-
tion method based on gaussian mixture model to extract
the moving target from the video stream, and combined
with the multi-color detection of RGB, HSI and YUV
color space to obtain the possible fire area, the proposed
method can achieve better effectiveness, adaptability
and robustness; Wu (2015) proposed an algorithm for
flame detection based on fusion of circularity, rectangu-
larity and the coefficient of orthocenter height and input
these features into SVM for classification. The proposed
algorithm is efficient and fast for fire detection, and it
could detect fire real-time under a variety of circum-
stances. Through the processing of video images, real-
time forest fire spread data can be acquired effectively.
Through the analysis of experimental data and the selec-
tion of appropriate data processing means, an effective
forest fire spread model can be established. Yang (2016)
used Unity to build three-dimensional terrain and im-
proved cellular automata to simulate the spread of forest
fires. He modeled and simulated three different terrain
vegetation respectively; Tang (2015) developed a three-
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dimensional visual simulation system based on the FAR-
SITE forest fire spreading simulation engine, which can
simulate the forest fire spreading process under the in-
fluence of different combustible substances, topography
and meteorological factors, predict forest fire behaviors
and evaluate fire occurrence areas.

As shown in Fig. 1, the first part of the paper intro-
duces how to preprocess the image collected by binoc-
ular camera and extract the fire line at each time, and
convert it into actual coordinate system through a PCL
point cloud. The second part establishes the forest fire
area spread model by using the revised Wang Zhengfei’s
model and Huygens principle. In the third part, the
optimization objectives of the spread model parameters
are defined according to the experimental data, and es-
tablish the gradient descent mathematical model. The
vertical and horizontal evaluation of the optimized forest
fire area spread model is carried out from two aspects of
goodness of fit and residuals.

Figure 1: system flowchart

2 Binocular image preprocessing

In the traditional forest fire experiment or on-the-spot
survey, most of the experiment data collected from the
forest fire are carried out artificially. For example, in or-

der to collect the spread rate of fire, it is necessary to lay
thermocouples in advance in the experimental fire field,
and to estimate the spread rate of fire through temper-
ature sensing, which is very time-consuming and con-
sumes a lot of manpower and material resources. ZED
binocular stereo camera (Wang et al., 2019) is used to
collect the relevant data of the fire field. Through the
built-in API of ZED camera, the pixel distance can be
easily transferred to the real three-dimensional distance,
and the data acquisition efficiency is very efficient.

2.1 DH parameters of the model

Binocular localization is a commonly used method
in three-dimensional reconstruction. Depth information
can be obtained by geometric constraints using parallax
between images captured by two cameras. In normal
three-dimensional reconstruction, the texture of the ob-
ject surface has a great impact on the reconstruction ef-
fect, so it is necessary to take multi-angle photographs of
the same object to get a better three-dimensional recon-
struction model. However, the forest fire spread model
in the paper, we only need to collect the speed of fire
spread, so it is not very related to the shape of the fire
itself. ZED camera can be set up to take pictures at
fixed points at fixed points, so as to capture the spread
trend of fire, and the spread speed at actual distance can
be obtained by coordinate transformation.

Binocular localization uses two cameras to take pic-
tures, and uses least square method to realize three-
dimensional reconstruction (Technikova et al., 2016). A
simple model of binocular positioning is shown in Fig. 2.

Figure 2: The model of Binocular Location

Assuming that the object and the two cameras in the
space are arranged in the relationship show above, C1
and C2 are two identical cameras, whose internal and ex-
ternal parameters can be obtained by Zhang Youzheng
camera calibration method (Zhao et al., 2018), and f is
the camera focal length obtained by calibration. Let C1
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coordinate system be O1x1y1z2, C2 coordinate system
be O2x2y2z2, and the distance between two cameras is
B. The coordinates of any point P in space (x, y, z) and
the axis y are perpendicular to the paper surface. Ac-
cording to the triangle similarity relation, the following
relations can be obtained as the Eq. (1).

z

f
=

x

x1
z

f
=
x− b
x2z

f
=

y

y1
=

y

y2

(1)

According to the Eq. (1), infer the depth z of point P
as the Eq. (2):

z =
f · b

x1 − x2
=
f · b
d

(2)

From Eq. (1) and Eq. (1), we can deduce the x and y
values of space point P as the Eq. (3):

x =
x1 · z
f

y =
y1 · z
f

(3)

The three-dimensional coordinates of any point in
the image can be obtained efficiently by using Zhang
Zhengyou’s camera calibration method (Liu et al., 2017)
and binocular positioning. This method is very helpful
for collecting forest fire spread data. The depth map can
be obtained by ZED camera as shown in Fig. 3.

(a) Ordinary image (b) Depth image

Figure 3: RGB image and depth image

2.2 Image Segmentation

After ZED image acquisition, in order to obtain the
coordinate of the fire front at every moment, image aug-
mentation is needed to extract the fire from the whole
picture.

2.2.1 Color space preprocessing

A common color space in computer is RGB color
space, which is based on three basic colors: R (Red),

G (Green), B (Blue) to produce rich and extensive col-
ors. However, as can be seen from Fig. 3, the color of
fire is not every different from that of surrounding brown
meadows, so this color space can bot accurately extract
the color features of fire. Considering the heat and lu-
minescence of the fire itself, the difference between the
fire and the surrounding scenery is mainly due to the
different brightness. The brightness of the fire should
be much higher than that of the surrounding scenery.
Therefore, image preprocessing is based on YCrCb color
space (Al-Tairi et al., 2014), which reflects brightness
information. YCrCb color space describes color by the
relationship between brightness and color difference. Y
channel describes brightness, and both Cr and Cb are
chroma channels. The original image of Fig. 3 is sepa-
rated by channels, as shown in Fig. 4.

(a) YCrCb image (b) Y channel

(c) Cr channel (d) Cb channel

Figure 4: YCrCb Image Channel Separation

As can be seen from Fig. 4, the YCrCb color space
with brightness information considerations can extract
fire color features well. There is a great difference be-
tween the fire pixel value in the Cr channel and the sur-
rounding scenery, so this paper chooses the Cr channel
as the object of further processing. In order to enhance
the characteristics of fire, image closed operation is per-
formed on Cr channel. Closed operation is an operation
that expands the image first and then corrodes it. It is
used to remove small noise points and to connect the fire
wires to a certain extent, as shown in Fig. 5.

For the image after closed operation, the fire line and
the surrounding scenery have obvious differences, and
then binary threshold segmentation can separate the fire
from the whole picture, as shown in Fig. 6.

2.2.2 Data Extraction

In the above, the processing of a single picture is com-
pleted. In the whole video, the video image after image
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Figure 5: Closed operation of image

Figure 6: Binary threshold segmentation

preprocessing can be obtained by processing the contin-
uous frames. The fire image reflected by each picture is
only the spread change under the pixel distance, and the
fire area corresponding to each picture can be converted
into the fire area in the real space by PCL of point cloud.
In this paper, a total of about 2 minutes of video was
recorded. 64 frames were randomly selected as data pro-
cessing frames. The first 50 frames were used as training
data to optimize the model, and the last 14 frames were
used to evaluate the regression model.

3 Establishment of forest fire sprea-
ding model

3.1 Forest Fire Spread Velocity Model

At present, the main models of forest fire spread in the
world are Rothermel model in the United States (Ervilha
et al., 2017), MacArthur model in Australia (Wang et
al., 2013), Canadian forest fire spread model (Wang et
al., 2013), Wang Zhengfei spread model in China (Wang
et al., 2013), and various modified models evolved on
the basis of these models. Based on the comprehen-
sive consideration of various environmental conditions
and experimental equipment, Wang Zhengfei’s model is
selected as the deduction formula of speed, and the im-
proved analysis of forest fire spread model is carried out
by combining Huygens’principle.

Wang Zhengfei’s model is based on a large number of
spot burning experiments. According to the tempera-
ture, humidity and wind level of the fire field, an initial
spreading velocity R0 is given, and then a constant coef-
ficient is given according to the terrain, wind speed and
types of combustibles. Finally, the formula of forest fire
spreading speed is obtained as Eq. (4).{

R0 = a · T + b · V + c · h− d
R = R0 ·Ks ·Kφ ·Kf

(4)

In the formula: R0 is the initial forest fire spread-
ing speed (m/min); a, b, c, d constant; T is the tem-
perature (◦C), V is the Buffalo wind level, h is the
air humidity(%); R is the forest fire spreading speed
(m/min); Ks, Kφ, Kf are the combustible index, wind
coefficient and topographic coefficient respectively the
three coefficients can be obtained through a look-up ta-
ble (Chen et al., 2012).

In this paper, meadow site is chosen as the burning
site, and there is not too much slope fluctuation, so the
topographic coefficient Kf and wind speed coefficient
Kφ are not considered for the time being, because in
Huygens Principle, the influence of various directions of
fire spread will be taken into account, and the considera-
tion of wind speed coefficient will be discussed below. In
order to better simulate the trend of forest fire spread,
four constants (a, b, c, d) and combustible index Ks in
the initial forest fire spread rate R0 are modified. Be-
cause the exponents of Wang Zhengfei’s model are de-
rived from a large number of experiments, the revision
of Ks only fluctuates in a small range. The modified
KS is given by Eq. (5).

KS = K
10

10+sin e
s (5)

In the formula: KS is a new parameter after modi-
fication, and finally the forest fire spreading speed R is
obtained as Eq. (6):

R = R0 ·KS ·Kφ ·Kf = R0 ·K
10

10+sin e
s (6)

3.2 Forest Fire Area Spread Simulation Based
on Huygens Principle

Although Wang Zhengfei’s model can accurately es-
timate the spreading speed of forest fires at a certain
time, it is not accurate enough to describe the spread-
ing area of forest fires and the speed of each direction of
fire spread. In this paper, the data obtained from ZED
image processing are mostly the area of fire field at each
time, so in order to better describe the experimental
data entering Huygens principle. Huygens principle ex-
plains the propagation of elliptical expansion in the front
propagation of light wave, which Richards (Richards and
Gwynfor, 1994) applied to wild-fires.
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Figure 7: Forest Fire Spread Based on Huygens Principle

As shown in Fig. 7, assuming that every point around
the fire field is a new fire point and propagates within a
unit time t, an elliptical small fire field is formed. Let the
coefficient LB be the ratio of length to width of elliptical
small fire field, which is related to the wind speed (H.
E, 1983).

LB(t) =

0.9360.2566U(t) + 0.461−0.1548U(t) − 0.397

HB =
LB +

√
LB2 − 1

LB −
√
LB2 − 1

(7)

U(t) is the wind speed. In the small elliptical fire
field, a is the lateral velocity, (b+ c) is the front and the
outside velocity. Based on Wang Zhengfei’s model and
geometric relation, a, b and c can be obtained as shown
in Eq. (8). 

a = R · 1 + a/LB

2LB

b = R · 1 + 1/HB

2

c = b− R

HB

(8)

If all points in the fire field are taken into account, the
area of the outer circle formed by all ellipses is the area
where the fire field diffuses at a certain time. According
to the partial differential equation derived by Richards,
the phase strain change of the fire diffusion vector can
be obtained, as shown in Eq. (9).

∆X(xs, ys) =
∂x(s, t)

∂t
=

a2 cos θ(xs sin θ+ys cos θ)−b2 sin θ(xs cos θ−ys sin θ)√
(b2(xs cos θ−ys sin θ))2+(a2(xs sin θ+ys cos θ))2

+c sin θ

∆Y (xs, ys) =
∂y(s, t)

∂t
=

−a2 sin θ(xs sin θ+ys cos θ)−b2 cos θ(xs cos θ−ys sin θ)√
(b2(xs cos θ−ys sin θ))2+(a2(xs sin θ+ys cos θ))2

+c cos θ

(9)

In Eq. (9), θ is the composite angle of wind direction
and slope direction. In this experiment, the slope angle
is not considered because the slope fluctuation is not
large; t is the time of propagation and spread; xs and
ys are the coordinates of the ignition point. According
to the fitting ellipse of the fire field, the fire area at t
moment can be obtained as Eq. (10).

S(t) =
1

4
π · (X0 + t ·∆X) · (Y0 + t ·∆Y ) (10)

4 Parameter optimization and evalu-
ation of forest fire area spread
model

4.1 Parameter optimization of spread velocity
model

Because the area of forest fire spread is approximately
linear with time, the first 50 experimental data values
are optimized in MATLAB. In order to find the optimal
point efficiently, the gradient descent method is used to
solve the parameters of the forest fire spread model. De-
fine the cost function as Eq. (11).

J(θ) =
1

2n

n∑
i=1

(hθ(x
i)− Y i)2 (11)

The cost function of mean square error is chosen
here, in which n is the number of data sets; 1/2 is the
quadratic coefficient of a constant in order to offset the
differential, which will not produce redundant constant
coefficients for subsequent calculation; Y i is the mea-
sured value of forest fire spread area corresponding to
each time point in the data set. hθ is a predictive func-
tion, i.e. the formula of forest fire spread deduced above.
According to the time point xi of each input, the pre-
dicted hθ value is calculated. The variable hθ is revised
according to the difference between the predicted value
and the measured value, and the optimal point is found
through many iterations. In this paper, there are five
variables: temperature coefficient a, wind level coeffi-
cient b, humidity coefficient c, constant coefficient d and
combustible index coefficient e. The prediction function
is as Eq. (12).

hθ(x
(i)) = (x(i), aT, bV, ch, d, sin e) (12)

From the cost function, we can see that the problem
is actually solved by gradient descent of five variables.
Wherein, sin e is a modified parameter of wind speed
KS, which can be regarded as a constant parameter in
the model operation and has no influence on the change
of x. Parameters a, b, c and d constitute parameters
R0 as a superimposed system. Since KS is a constant,
the change of velocity in the above-mentioned spreading
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model is affected by only one parameter R0, so this sys-
tem is a linear model. The gradient of the cost function
is solved by differentiating each variable separately as
Eq. (13).

5J(θ) = 〈∂J
∂a
,
∂J

∂b
,
∂J

∂c
,
∂J

∂d
,
∂J

∂e
〉

∂J

∂a
=
T ·KS
n

n∑
i=1

(hθ(x
(i))− Y (i))x(i)

∂J

∂b
=
V ·KS
n

n∑
i=1

(hθ(x
(i))− Y (i))x(i)

∂J

∂c
=
h ·KS
n

n∑
i=1

(hθ(x
(i))− Y (i))x(i)

∂J

∂d
=
KS

n

n∑
i=1

(hθ(x
(i))− Y (i))x(i)

∂J

∂e
=
R0 cos ei

n

n∑
i=1

(hθ(x
(i))− Y (i))x(i)

(13)

The gradient is given as a vector whose direction in-
dicates the direction in which the function rises fastest
at the given vertex. Therefore, in order to find the local
optimal point, the negative gradient direction is chosen
as the optimal direction. Then:

θ1 = θ0 − α5 J(θ) (14)

α is the learning rate, which determines the speed of
gradient descent. The initial value is 0.1. The updated
formula is as Eq. (15).

α =

{
αi+1 = αi · 1.05, (J(θi) < J(θi−1))

αi+1 = αi · 0.5, (J(θi) > J(θi−1))
(15)

If the value J of the cost function of the first order
is less than that of the cost function of the first order,
the learning rate will increase by 5%. On the contrary, it
changes to 50% of the original value and resets the value
of the iteration variable of the first time. Following the
above principles, the training data values are optimized
by regression.

The experimental site is located in Hongqi Forest
Farm, Hegang City, Heilongjiang Province, 130◦E east
longitude and 47◦N north latitude, late November. On
the day of ignition, the average temperature was 11◦C,
the Buffalo wind class was 2, and the humidity was 71%.
The burning site was meadow, so the combustible index
Ks was 1.8. The optimization results were as Fig. 8:

In Figure 7, the red dot is the experimental measured
point, and the blue line is the fitting curve. It can be seen
that the trend of forest and area spread can be basically
fitted with good optimization results. The parameters
of the optimized formula are as Tab. 1:

By using the spread formula after regression and
Wang Zhengfei’s spread model before revision, the last

Figure 8: The results of gradient descent optimization

Table 1: Comparison of optimized(2) and unopti-
mized(1) parameters

Index a b c d e

(1) 0.4256 0.4257 −1.412 −1.107 1.91
(2) 0.03 0.05 −0.01 −0.3 1.8

14 time points of the experimental data were predicted,
and the evaluation and analysis of the regression model
were compared with the measured values. As shown
in Fig. 9, the “×” symbol represents the data of the
measured value, the “◦” symbol represents the predicted
value after regression, and the “�” symbol represents the
predicted value of the original parameter. It is obvious
that the calculated results of the model without modifi-
cation are quite different from the actual values, and the
predicted values of the model after modification are in
good agreement with the measured values. Based on this
result, the model will be evaluated from three aspects.

Figure 9: Comparison of regression value, measured
value and predicted value of unmodified model
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4.2 Model assessment

4.2.1 The goodness of fit-R2

In regression prediction, the fitted line is only an
approximate curve, and it is impossible to include all
points. Therefore, in order to evaluate the goodness of
fit, the goodness of fit-R2 (Zendehdel, 2018) is used to
judge the goodness of fit of regression equation.

R2 =
SSR

SST
=

SSR

SSE + SSR
(16)

In the above Eq. (16), SSR is the sum of regression
squares, SSE is the sum of residual square, and the sum
of the two SST is the sum of total deviation squares.

The sum of regression squares is shown in Eq. (17).
The change of the difference between regression value
and mean value is caused by the change of time of in-
dependent variable, which reflects the change of area
caused by the linear relationship between area and time
in the total deviation, and can be explained by the re-
gression line.

SSR =
n∑
i=1

(Ŷi− Ȳ )2 = (Ŷ1− Ȳ )2 + . . .+(Ŷn− Ȳ )2 (17)

From fourteen experimental data, the mean value of
measured value Ȳ=292.68 m2 can be obtained, and the
difference between the regression value of corresponding
points and the mean value of measured value is as Tab. 2.

Table 2: The Difference between the Mean of Regression
Value and the Measured Value

Time(min) Ŷi − Ȳ T ime(min) Ŷi − Ȳ
2.13 −22.71 2.36 0.41
2.16 −19.45 2.40 3.78
2.20 −16.17 2.43 7.15
2.23 −12.88 2.46 10.54
2.26 −9.58 2.50 13.95
2.30 −6.26 2.53 17.37
2.33 −2.92 2.56 20.80

From Tab. 2 can be obtained:SSR = 2568 m2.

The sum of squares of residuals is shown in Eq. (18).
This difference represent the effect of factors other than
the linear effect of time on area, which cannot be ex-
plained by regression lines.

SSE =

n∑
i=1

(Ŷi−Yi)2 = (Ŷ1−Yi)2+. . .+(Ŷn−Yi)2 (18)

Table 3: The difference between the regression value and
the measured value

Time(min) Ŷi − Ȳ T ime(min) Ŷi − Ȳ
2.13 −4.77 2.36 0.51
2.16 −4.81 2.40 2.30
2.20 −3.66 2.43 3.8
2.23 −3.17 2.46 0.52
2.26 −2.42 2.50 1.10
2.30 −1.28 2.53 1.47
2.33 −0.51 2.56 −1.42

From the experiment data, the difference between the
regression value and the measured value can be obtained
as Tab. 3:

According to the table above, the sum of regression
squares can be obtained:SSE = 110.82 m2.

Two different differences distributions are shown in
Fig. 10. The green point is the difference between the
regression value corresponding to a certain time point
and the mean value of the measured value (Ŷi − Ȳ ), it
can be seen that the difference varies with the time of
independent variable x. The red dot is the difference
between the regression value corresponding to a certain
time point and the measured value (Ŷi − Yi), it can be
seen that the distribution is not only affected by the
independent variable x time, but also irregular.

Figure 10: Two different differential distributions

The sum of squares of total deviations is the sum of the
two, which reflects the general fluctuation of the values
of dependent variables. By dividing SSR and SST , we
can get the proportion of errors in the total fluctuation.
This proportion is between 0 and 1, the better the fitting
degree of the regression equation is. According to the
above, the goodness of fit can be obtained as Eq. (19).

R2 =
SSR

SST
=

SSR

SSE + SSR
= 0.9586 (19)

Finally, the goodness of fit is 0.9586, which should
be a good value, indicating that the regression equation
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fits 14 test values very well. This is also related to the
specific ignition experiment on that day. When the fire
started to spread, it was affected by many external fac-
tors. After that, when the fire increased, it gradually
spread in accordance with a basically fixed trend.

The accuracy of the model can be expressed by
RMSE. The root mean square error, also known as
standard error, is the square root of the mean of the de-
viation between the regression value and the measured
value. Standard error is very sensitive to a group of large
or small errors in measurement so standard error can
well reflect the precision of measurement. The square
sum of the difference between the regression value and
the measured value is the SSE mentioned above, so the
root mean square error can be obtained as Eq. (20).

RMSE =

√√√√ 1

N

n∑
i=1

(Ŷi − Yi)2 =

√
SSE

N
(20)

Among the Eq. (20), SSE is obtained from the
above, N is the number of experimental data, and there
are fourteen test data sets, which can be obtained:
RMSE = 2.8136 m2.

The result is within the acceptable range of error rel-
ative to the actual area of the fire field.

4.2.2 Residual Analysis

The residual error is the difference between the re-
gression value of the dependent variable time and the
measure value, represented by ei. The residual is re-
garded as the observed value of the error. Residual anal-
ysis (Jia et al., 2018) can be used to examine the ratio-
nality of model assumptions and the reliability of data.
The commonly used residuals are ordinary residuals, in-
ternalized residuals and externalized residual. This pa-
per chooses to analyze the internalized residuals (Li et
al., 2008). The internalized residuals also become stan-
dardized residuals. If the residual ei obeys the normal
distribution N(0, ei2), and if the standardized residual
ei∗ is obtained by standardizing ei, then the ei∗ will obey
the normal distribution N(0, 1). If the assumption that
the error term obeys normal distribution holds, then the
distribution of standardized residuals obeys normal dis-
tribution, then about 95% of standardized residuals are
between -2 and 2. As shown in Fig. 11.

By comparing the normalized residual distribution be-
fore and after the revision, the optimization degree of the
model can be seen intuitively. Standardized residuals
are represented by Zei, the corresponding standardized
residuals of observed values as Eq. (21).

Zei =
ei

Se
=
Ŷi − Yi
Se

(21)

Figure 11: Normal Distribution of Standardized Resid-
ual

Se is the standard deviation estimate of the residuals.
The standard deviation formula is as Eq. (22).

Se =

√√√√ 1

N

N∑
i=1

(ei − ē)2 (22)

In order to better reflect the difference between before
and after optimization, the standardized residuals can
be obtained by using the parameters of Wang Zhengfei’s
model before and after modification, as shown in Fig. 12.

From Fig. 12a, it can be seen that the standardized
residuals generated by the optimized model are between
-2 and 2, which proves that the error of regression equa-
tion is within acceptable range. However, the standard
deviation of the unmodified spreading velocity model in
Fig. 12b is larger and less than 0, which indicates that
the unmodified Wang Zhengfei’s model does not predict
the trend of forest fire spread sufficiently and underes-
timates the trend of forest fire spread. The corrected
model based on the measured data in this paper can
achieve good prediction results.

5 conclusion

Forest fire spread is a research field with changeable
conditions and complex factors, so no model can abso-
lutely apply to all cases of forest fire spread. In this
paper, ZED camera is used to collect real-time data and
modify the parameters of forest fire spread model in or-
der to better predict the spread of forest fire.

On the basis of previous studies, this paper presents
a new method for monitoring the spread trend of forest
fire. Using ZED camera to shoot spot burning video,
the spread speed and area of fire can be obtained by
processing video image. The parameters of the new
model, which is established by Wang Zhengfei model
and Huygens’ theory, are corrected by using the col-
lected data. Finally, the goodness of fit, root mean
square error and residual diagram are evaluated and an-
alyzed. The goodness of fit reached 0.9586, indicating
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(a) Standardized residuals after optimization

(b) Standardized residuals before optimization

Figure 12: Standardized residuals

that the model could well fit the development trend of
experimental data and accurately predict the develop-
ment rate of forest fire spread. The root-mean-square
error is 2.8136 m2, which reflects that the error of the
model is controlled in a small range and can be ac-
cepted by a wide range of point burning experiments.
The prediction effect of modified model and unmodified
model is compared by residual diagram, which proves
that the modified extended model has higher prediction
accuracy.In addition, ZED camera is very effective to
collect data and save a lot of manpower and material
resources. The experimental results also prove the feasi-
bility of this method.Moreover, the test method by using
ZED camera to collect data is very efficient, which saves
a lot of manpower and materials. The results also prove
the feasibility of this method.

Limited by the previous experimental conditions, the
detection of some variables such as wind speed and hu-
midity in this experiment is not very comprehensive, and
the data can not be collected in real time like ZED video.
This is still much space for improvement of the model
results. In the future research, I hope that I can con-
trol variables more deeply and better reflect the impact

of relevant variables from the model. For forest fire de-
tection, it is also hoped that there will be better man-
agement and control of fire prevention measures, better
prediction of fire, simulation of fire and eventual extin-
guishment, and more scientific methods for forest fire
prevention research.
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