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Abstract. The determination of invasion stages and the degree to which an invasive plant (non-native
invasive plant, NNIP) has become established and spread in an ecosystem (“invasiveness”) is essential
for developing methods of mitigation and control. We mapped the invasion stages and quantified the
invasiveness of four NNIPs of great concern, multiflora rose (Rosa multiflora Thunb), nonnative bush hon-
eysuckles (including four species from the Lonicera spp family), common buckthorn (Rhamnus cathartica
L.) and garlic mustard (Alliaria petiolata [M. Bieb.] Cavara & Grande) in the Upper Midwest forestlands.
Specifically, we used the product of the estimated presence probability and mean cover rate of an NNIP
from a group of Forest Inventory and Analysis (FIA) plots in a county to represent its severity or area
occupied. We then calculated the empirical cumulative density function (ECDF) of the occupied area and
used classification and regression tree (CART) to classify the ECDF into a number of disjoint segments
to spatially represent invasion stages of an NNIP. The invasiveness of an NNIP in three major forest type
groups was then investigated via regression analysis of the change in the estimated mean cover rate with
the estimated presence probability across the mapped invasion stages (a proxy for invasion time). This
study demonstrates the feasibility of using data from a single time period for determining invasion stages
and invasiveness of NNIPs for the deployment of controlling or eradicating measures.

Keywords: empirical cumulative density function; CART; FIA; invasive plant.

1 Introduction

Mapping the invasion condition of nonnative invasive
plants (NNIPs) in forested ecosystems has become
a pressing concern in natural resource management.
NNIPs can result in significant ecological and economic
losses through competing with and displacing native
species, changing the chemical properties of soil and the
composition and structure of native ecosystems, alter-
ing natural disturbance regimes, and degrading ecosys-
tem services including timber production, carbon se-
questration, biodiversity, and recreation (e.g., Macdon-

ald 1994, Pimentel et al. 2005, Moser et al. 2009,
Eviner et al. 2012, Anderson and Crosby 2018). The
degradation of ecosystem functions and services is di-
rectly related to the abundance and invasion stage as
well as the “invasiveness” (degree to which an NNIP
has become established and spread in an ecosystem)
of NNIPs. There is extensive literature on the topic
of invasion stages (Richardson et al. 2000) and inva-
sion barriers (Williamson and Fitter 1996), largely re-
flecting the authors’ orientation on plants or animals
(Blackburn et al. 2011). Blackburn et al. (2011) pro-
posed a more comprehensive model that integrates both
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stages and barriers in a quest to unify invasion biology.
For the purposes of developing this elegant unified the-
ory, such efforts are laudable. However, managers face
situations with incomplete data and understanding of
the site-specific dynamics of invasive plants. Occam’s
razor suggests that a simpler paradigm better reflects
not only the situation on the ground but also the tools
available to managers. Finally, similar to an industrial
logistics model, managers measure “inventory” of inva-
sive species or stages at a point in time, and infer flows
or barriers between the stages. In that vein, we chose
the four-stage model of Theoharides and Dukes (2007)
They classified the invasion process of NNIPs into four
stages: introduction, colonization, establishment, and
spread. As Blackburn et al. (2011) observed, the barri-
ers to progression from one stage to the next are implied.
In the introduction stage, NNIPs are transported from
their native regions to a new region via long-distance
movements such as global commerce and travel, and
their impact on local ecosystems is minimal or hardly
detected. In the colonization stage, NNIPs survive and
achieve positive net growth rates at low densities. In the
establishment stage, NNIPs develop self-sustaining and
expanding populations. In both the colonization and es-
tablishment stage, the impacts of NNIPs are confined to
local ecosystems, so managers should take advantage of
the relatively limited presence of NNIPs and promptly
plan and conduct control measures. In the spread stage,
NNIPs disperse within a region over long distances and
the most efficient opportunity for controlling or eradi-
cating NNIPs has already passed. Others have classified
the invasion process into two stages (Davis 2009), three
stages (Williamson and Fitter 1996 Radosevich 2007),
or up to six stages (Henderson et al. 2006). All these
classifications are primarily qualitative, providing a way
to evaluate or characterize the impact of NNIPs on the
bioecological processes of native ecosystems based on en-
vironmental factors or the life-history or genetic traits
of the species.

Radosevich (2007) classifies the invasion process into
three invasion stages— introduction, colonization, and
naturalization—based on the logistic growth (i.e., occu-
pied areas) of NNIPs with invasion time. In the intro-
duction stage, the occupied area slowly increases with
time; in the colonization stage, the occupied area quickly
increases with time; and in the naturalization stage, the
occupied area slowly increases and gradually reaches a
stable limit or carrying capacity. Management strategies
are different for each invasion stage. The cost of mitiga-
tion increases substantially as the populations of NNIPs
become more established in the ecosystem (Hobbs and
Humphries 1995). When the abundance of NNIPs is
very low, the corresponding management strategies pri-
oritize quarantine or eradication. When the abundance

of NNIPs rapidly increases during the colonization stage,
the management strategy, given limited resources, is to
focus on limiting their spread (Webster et al. 2006). To
prevent the spread of NNIPs, it is critical that man-
agers detect them as early as possible and strategic in-
ventories can help here (Moser et al. 2016). Finally,
when the abundance of NNIPs is very high, in the nat-
uralization stage, it is often extraordinarily expensive
to remove NNIPs from an invaded area, particularly in
forested ecosystems (Hobbs and Humphries 1995). Early
detection of NNIPs is therefore an important step in
cost-effective control of these species. Mapping the in-
vasion stage (process) and quantifying the invasiveness
of an NNIP in infested native ecosystems based on its
occurrence, abundance, and spatial distribution will be
of great value to the control and mitigation of NNIPs
(Moser et al. 2016).

In order to quantify levels (or stages) of biological in-
vasion, Catford et al. (2012) proposed and compared
twelve potential indicators including presence/absence,
abundance, cover and richness (absolute and relative)
of NNIPs. They argued that an index of invasion level
(stage) should not only facilitate the assessment of the
extent or severity of NNIPs, reveal spatial and tempo-
ral trends and act as an early warning sign of ecologi-
cal degradation, but also can be used to guide manage-
ment efforts. Among the potential indices, Pearson at
al. (2016) and Guo et al. (2015) used relative abundance
(presence) and relative richness (cover rate) to quantify
“apparent” impact of NNIPs and invisibility and degree
of invasion for recipient communities and ecosystems. To
date, we have not noted specific research or methodology
that integrate these indices and spatial data of NNIPs
for mapping invasion stages (delineating the boundary
and/or spatial extent/range of invasion severity/level)
and quantifying invasiveness of NNIPs at the regional
scale.

Historical and contemporary land-use patterns have
helped to shape the forests of the Upper Midwest re-
gion of the United States. Commercial timber harvest-
ing in the 19th and early 20th century claimed extensive
stands of eastern white pine (Pinus strobus L), shortleaf
pine (Pinus echinata Mill.), and other species in north-
ern Minnesota, Wisconsin, and Michigan and southern
Missouri. At the same time, forest land in Iowa, Illi-
nois, Indiana, and southern Wisconsin was cleared for
agriculture as settlers took advantage of the productive
soils. Savannas and prairies were also converted to farm
land (Andersen et al. 1996, Soucy et al. 2005). Before
settlement by Europeans, the periodic return of wildfires
had maintained a mosaic of forest types and structures.
Intensive timber harvesting, widespread land clearing,
and management policies that suppressed wildfire con-
tributed to a fragmented landscape. The resulting
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patchwork landscape and altered wildfire regime created
conditions that NNIPs could exploit (Moser et al. 2009),
often at the expense of understory development of native
tree species.

The inventory data collected in 2005 and 2006 by the
U.S. Department of Agriculture, Forest Service’s Forest
Inventory and Analysis (FIA) program recorded 25 com-
monly found invasive shrubs, vines, herbs, and grasses
that may have adverse impacts on the forests in the Mid-
west (Fan et al. 2013). The primary factors known to
affect the invasiveness of NNIPs are disturbances sig-
nified by county-level forest cover percent, distance to
road, biodiversity, site quality, slope, and stocking level.
As a continuation of our previous study in which the
spatial distributional patterns of NNIPs were mapped
using kernel smoothing (Fan et al. 2013), the objectives
of this study are to 1) develop a methodology to map
the invasion stage of four most dominant NNIPs, mul-
tiflora rose (Rosa multiflora Thunb), nonnative bush
honeysuckles (including four species from the Lonicera
spp family), common buckthorn (Rhamnus cathartica
L.), and garlic mustard (Alliaria petiolata [M. Bieb.]
Cavara & Grande) in the Upper Midwest counties based
on the probability of presence and cover percentage data
and 2) quantify the invasiveness of these four NNIPs
in three major forest type groups (oak-hickory [Quer-
cus spp.-Carya spp.], maple-beech-birch [northern hard-
woods; Acer spp.-Fagus spp.-Betula spp.], and elm-ash-
cottonwood [Ulmus spp.-Fraxinus spp.-Populus spp.])
in the Upper Midwest. The resultant maps of invasion
stage and measures of invasiveness of selected NNIPs in
major forest type groups will provide baseline informa-
tion on current condition of NNIPs for management de-
cision making about the control and mitigation of NNIPs
in the Upper Midwest.

2 Materials and Methods

2.1 Study area

The Upper Midwest study area (Figure 1) consists of
seven states: Illinois, Indiana, Iowa, Michigan, Min-
nesota, Missouri, and Wisconsin. Situated where sev-
eral ecoregions come together, this area is character-
ized by diverse vegetation communities. The north-
ern portions of the region are the most heavily forested
areas (Minnesota - 29.3%, Wisconsin - 38.5%, Michi-
gan - 31.2%, and Missouri - 32.8%, of total land area).
The central portion of this area (Iowa, Illinois, and In-
diana) is currently a patchwork of agricultural lands,
urban areas, and some forest land; forests make up
8%, 12.2%, and 20.3%,of total land area in Iowa, Illi-
nois, and Indiana, respectively [3,18]. A long history of
human-caused disturbance and fertile soil provide favor-
able conditions for the establishment of NNIPs. In this

study area, the primary forest-type groups infested by
NNIPs are oak/hickory (37.7% of total forestland in the
Midwest), maple/beech/birch (15.9% of forestland), and
elm/ash/cottonwood (3.6 % of forestland) (Figure 1)

Figure 1. Figure 1: Distribution of three forest-type groups that
have been infested by NNIPs in the Upper Midwest.

2.2 Data

We used FIA data from the 2005 and 2006 inven-
tory years. Phase 2 (tree inventory) data are col-
lected on the standard FIA plot grid (1 plot per
2400 ha) (https://www.fia.fs.fed.us/library/database-
documentation/index.php). Each Phase 2 plot consists
of four subplots with a radius of 7.3 m (McRoberts 1999,
Woudenberg et al. 2010). In the Upper Midwest states,
sampling of 25 NNIPs including shrubs, grasses, herba-
ceous species, and vines of interest was overlaid on these
plots (Pearson et al. 2016). The presence and cover rate
(%) were used to describe the presence and abundance
of each NNIP in an FIA plot. For each NNIP, the value
for presence is 1 if present or 0 if absent; the values
for cover rate (%) are recorded as the middle value of
the range of percent cover for each cover code (Table
1). In total, 8632 Phase 2 forested plots were assessed,
and 594 counties out of 649 counties in the Upper Mid-
west had FIA plots (Moser et al. 2009) Four of the most
abundant NNIPs (groups) in terms of presence proba-
bilities (pp) in different life forms (shrubs and herbs)
included in this study are multiflora rose (Rosa multi-
flora Thunb,pp = 15.3%), nonnative bush honeysuck-
les (including four species from the Lonicera spp family,
pp = 9.2%), common buckthorn (Rhamnus cathartica
L., pp = 4.8%) and garlic mustard (Alliaria petiolata
[M. Bieb.] Cavara & Grande, pp= 3.1%) (Figure 2).
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Figure 2: Spatial distribution of infested FIA plots by four major nonnative invasive plants in the Upper Midwest
forestlands in the 2005-2006 inventory.

Table 1: Cover codes and ranges of percent cover of non-
native invasive plants (NNIPs) used in recording invasive
species’ presence, FIA plots, 2005-2006.

Cover Range of Middle
Code % cover value (%)

1 < 1, trace 0.5
2 1 to 5 3.0
3 6 to 10 8.0
4 11 to 25 18.0
5 26 to 50 38.0
6 51 to 75 63.0
7 76 to 100 87.0

2.3 The presence probability and mean cover
rate (%) of NNIPs at county level

In the dataset used for this study there are, on average,
15 plots in each county. Fifty-nine counties have only

one FIA plot, whereas 65 counties have more than 30
FIA plots. In order to overcome this bias attributed to
the sample size in calculating the presence probability
and mean cover rate (%) of an NNIP for each county,
we used the following formula (neighborhood smooth-
ing) to define the presence probability for a county based
on the positive spatial autocorrelation in NNIP data
(Moser et al. 2016, Fan et al. 2013):

pi =

∑
i∈ηi si∑
i∈ηi ni

(1)

where si is the number of the presence plots (plots where
at least one NNIP was recorded) in the county i, ni is
the total number of plots in the county i, and ηi is the
set of counties that share a boundary with the county
ibased on the Rook’s rule, including the county i. We
define the presence probability as the ratio between the
number of presence plots and the total number of FIA
plots in the county. We calculated the mean cover rate of
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NNIPs for a county using the same rule. The estimated
presence probability and mean cover rate will be used to
estimate the severity or occupied area of an NNIP in a
county.

2.4 Classification of invasion stages through
a proxy of the occupied area or invasion
severity of NNIPs at county level

The presence probability (measuring abundance) and
mean cover rate (measuring dominance) are two indica-
tors of the invasion severity or occupied area of NNIPs
in a county; values of these two variables are often posi-
tively correlated and increase with the invasion time (or
stage). In our analysis, we used the product of the es-
timated presence probability and mean cover rate as a
proxy to quantify the occupied area or invasion severity
of NNIPs in a county, which considers both the abun-
dance and the dominance of NNIPs in a group of FIA
plots (Catford et al. 2012, Pearson et al. 2016). The
empirical cumulative distribution function (ECDF) of
the product shows the ranked (from low to high) dis-
tribution of the invasion condition or severity of NNIPs
among the Upper Midwest counties. The ECDF often
takes a sigmoid or exponential or spherical curve and
can be viewed as a composite “space-for-time” version
of the hypothetical, temporal invasion process (stage) on
a particular site or area (Theoharides and Dukes 2007).
Each point on the ECDF curve will represent one county
with low invasion severity counties appearing on the left
and high invasion severity counties on the right in a se-
quential order (from low cumulative probabilities to high
cumulative probabilities).

In this study, classification and regression tree
(CART) (Breiman et al. 1984) was used to segment the
ECDF of the NNIP invasion proxy so that the 649 Up-
per Midwest counties were classified into different groups
(invasion stages) using the cumulative probability of a
county as the response and the invasion proxy (the prod-
uct of the estimated presence probability and mean cover
rate of NNIPs) as the predictor. Thus, counties are more
homogenous in the invasion condition (similar ECDF
values) within an invasion stage but significantly differ-
ent between and among invasion stages. The R pack-
age rpart (R Development Core Team 2011) was used
to construct the optimal regression tree model since it
automatically performs cross-validation and calculates
the cross-validation error rate, which estimates the ex-
pected error rate for use of the regression tree with new
data. The cross-validation error rate gives an assess-
ment of the performance of the resulting regression tree,
that is, the change in prediction error with changing tree
size. Therefore, the optimal regression tree model that
minimizes the relative cross-validation error rate can be

selected (Maindonald and Braun 2007) Taking multi-
flora rose as an example, the optimal regression tree size
(the number of terminal nodes) with the minimal rela-
tive cross-validation error is four (Figure 3A). Figure 3B
shows the optimal regression tree profile with four ter-
minal nodes and figure 3C shows the corresponding four
invasion stages (I, II, III, IV) displayed in the ECDF
curve of the product of the estimated county-level pres-
ence probability and mean cover rate of multiflora rose.

2.5 Quantifying the invasiveness of NNIPs in an
ecosystem

FIA plots were first grouped by forest type group and
classified invasion stage. To assess the invasiveness of
an NNIP in a forest type group, we calculated its pres-
ence probability and mean cover rate for each forest
type group by classified invasion stages (time). The re-
lationship between the mean cover rate (response vari-
able, measuring the dominance or rate of the coloniza-
tion and establishment of an NNIP) and the presence
probability (independent variable, measuring the abun-
dance or rate of spread of an NNIP) across different in-
vasion stages was evaluated via regression analysis for
each forest type group. The slope (increase of mean
cover rate with presence probability) of the regression
model was used to measure the invasiveness of an NNIP
in a forest type group based on the assumption that the
presence probabilities of NNIPs by invasion stage are
an approximate measure of invasion time. A permuta-
tion test was conducted to test the statistical difference
of the slope (invasiveness) of an NNIP between differ-
ent forest type groups This study includes three major
hardwood forest type groups, which account for 88.2%
of the total forestland in the Upper Midwest and are in-
creasingly threatened by NNIPs based on the FIA data
(Moser et al. 2009, Moser et al. 2016, Fan et al. 2013)

All statistical computation and analysis were con-
ducted under the R statistical environment (R Devel-
opment Core Team 2011). The rpart package in R was
used to implement CART analysis (Therneau and Atkin-
son 2012, John and John 2003). The stats, maps and
rpart.plot and ggplot2 packages were used to run lin-
ear regression and to draw graphics and map invasion
stages.

3 Results

Approximately 15.3%, 9.2%, 4.8%, and 3.1% of FIA
plots had been infested, respectively, by multiflora rose,
nonnative bush honeysuckles, common buckthorn and
garlic mustard based on the 2005-2006 inventory data
(Table 2). Distribution of the four NNIPs varied across
the landscape: multiflora rose predominantly occurred
in central and southern counties, common buckthorn in
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Figure 3: Classification of invasion stages of multiflora
rose: (A) The plot of X relative error (relative cross-
validation error) vs. the regression tree size (the num-
ber of terminal nodes) showing an optimal tree size of
four corresponding to the minimal relative error. (B)
The optimal regression tree model with four terminal
nodes labelled as 4,5,6,7 (invasion stages I, II, III and
IV) showing the cut-off values of the product of the esti-
mated county-level presence probability and mean cover
rate (%)). The numbers (0.38, 0.41, 0.43, 0.46) in the
terminal nodes are the mean probability. (C) The ECDF
of the product and four cut-off values to map multiflora
rose into four invasion stages (labelled as I, II, III and
IV) based on the CART model.

central and northern counties, and garlic mustard in cen-
tral counties, while nonnative bush honeysuckles spread
across the entire Upper Midwest (Figure 2). Figure 3
showed the mapping process of invasion stages for mul-
tiflora rose. Based on the relative cross-validation error
change with regression tree size, the best regression tree
with the minimum relative cross-validation error should

have four terminal nodes (Figure 3A) as indicated by the
resultant pruned regression tree (Figure 3B). The ECDF
of the product of the estimated presence probability and
mean cover rate (%), a proxy of the county-level invasion
severity or occupied area of multiflora rose was then seg-
mented into four sections representing the four invasion
stages by using the breaks (cut-off values) of the pruned
regression tree (Figure 3C). Same process was applied
with the other three NNIP species. A graphic represen-
tation (Figure 4) displays the classified invasion stages
on the plane of presence probability versus mean cover
rate for all NNIPs. For multiflora rose, in invasion stages
I and II, the estimated mean cover rate increases slowly
and has relatively low variation with the presence prob-
ability, but in invasion stages III and IV the estimated
mean cover rate increases rapidly and has greater varia-
tion. Except for 142 (22%) deep northern counties (Fig
5, shaded in white) where no multiflora rose was found
in FIA plots, 138 (21%) and 111 (17%) counties (shaded
in blue and green, respectively) belong to invasion stages
I and II where multiflora rose has low cover class (<5%)
and presence probability (<0.4). Multiflora rose was
more prominent in the central counties and part of the
southern counties, of which 153 (24%) and 105 (16%)
counties belong to invasion stage III (shaded in brown)
and IV (shaded in red) with moderate and higher cover
classes (>5%) and presence probability (>0.4), respec-
tively. For the other three NNIPs, all advanced invasion
stages (III, IV) were spatially located in central counties.
Nonnative bush honeysuckles spread over more (88%)
counties than other species in four invasion stages with
36% of counties in advanced stages (III, IV). Common
buckthorn spread over 56% counties in three stages with
only 2% in advanced stage (III). Garlic mustard spread
over 50% of counties in four stages with 3% of counties
in advanced stages (III).

Regression analysis suggests that common buckthorn,
garlic mustard, and nonnative bush honeysuckles were,
overall, more invasive than multiflora rose in the Up-
per Midwest forest lands as shown by their significantly
greater slope coefficients (p <0.0009), but there were no
significant differences among them (Figure 5). For each
taxon that we studied, we did not find significant dif-
ferences in regression slopes among the three forest-type
groups at the significance level of α = 0.05. This result
suggests that the invasiveness of each genus or species
is not statistically different by forest type group due to
large standard errors (in parentheses in Figure 5.)

4 Discussion

4.1 4.1 Classification of invasion stages

The invasion stages presented in this study are quantita-
tively derived from data obtained over one measurement
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Table 2: Proportion of FIA plots infested by NNIPs, number (proportion in parenthesis) of counties in different
invasion stages based on the 2005-2006 survey data of nonnative invasive plants.

Species FIA plots Number of counties in stage
Name infested I II III IV None

Multiflora rose 15.3% 138 111 153 105 142
(Rosa multiflora Thunb.) (21) (17) (24) (16) (22)

Nonnative bush honeysuckle 9.2% 161 238 100 72 78
(Lonicera spp.) (25) (37) (15) (11) (12)

Common buckthorn 4.8% 215 136 16 282
(Rhamnus cathartica L.) (33) (21) (2) (44)

Garlic mustard 3.1% 197 105 21 326
(Alliaria petiolata (M. Bieb.) Cavara & Grande) (30) (16) (3) (50)

period. Invasion stages are not labeled categorically as
is done in other studies (Radosevich 2007) but can be
thought of in terms of severity where greater numbers
represent a greater degree of invasion (Guo et al. 2015).
The product of the estimated county-level presence
probability and mean cover rate (%) of NNIPs in a group
of FIA plots as a measure of “invaded area” or inva-
sion severity can be generated for individual species or
all NNIPs (Table 2), making the analysis applicable to
any spatial scale (Moser et al. 2016). Moody and Mack
(1988) show that the area invaded is a non-linear func-
tion of time if there are multiple foci for invasion and
the invaded area is a linear function of time if there is
a single focus of the invasion. Here, if we treat the es-
timated cover rate as a proxy for the infested area and
the estimated presence probability by invasion stage as
a proxy for the infested time, then the non-linear re-
lationship between the two variables (Figure 4 A and
B) for multiflora rose and nonnative bush honeysuckles
is consistent with the dispersal characteristics of most
NNIPs: a mixture of long-distance dispersal (e.g., birds)
and short-distance dispersal (e.g., through runoff, mam-
mals). Evidently, both species had multiple (>3) foci
for regional dispersion and spread (Figure 6). In con-
trast, the linear relationship between the estimated cover
rate and presence probability for common buckthorn and
garlic mustard (Figure 4 C and D) coincided with one
focus for regional spread (Figure 6). Classification of
invasion stage is an important component for the deter-
mination of any impacts invasions may have on native
plants in an area. Presence and cover rate have been
utilized to determine the effect of invasive plants on na-
tives Pearson et al. 2016). The use of the product of
presence probability and mean cover rate, compared to
either of both, allows for a more accurate estimation
of invasion severity of an area occupied by an NNIP

(Yu 2011), which provides resource managers a method
for prioritizing mitigation efforts based upon invasion
stage. This would allow for both limiting foci for fur-
ther invasion of NNIPs and minimize the local effects,
or degree of invasion (Guo et al. 2015) on native species
(Pearson et al. 2016).

The ECDF curve (Figure 3C) ranked the 649 Mid-
west counties based on the product of county-level pres-
ence probability and mean cover rate of an invasive plant
species (the x-axis) and reported the cumulative proba-
bilities (the y-axis) of a county corresponding to a value
of this product. The counties that have low product val-
ues and cumulative probabilities are lightly invaded and
are located in the left section (labelled as invasion stage
I), followed by moderately invaded counties (labelled as
II and III), and highly invaded counties (labelled as IV).
Since the ECDF curve describes the change of the prod-
uct of presence probability (abundance) and mean cover
rate (dominance) of an invasive species, its shape is pri-
marily related to the number of foci for invasion/spread,
rate of spread and growth rate in focal environment. We
found the shape of the ECDF curve is related to the inva-
siveness with less invasive species such as multiflora rose
(having minimal slope, Figure 5) having a gentle slope of
ECDF curve, while highly invasive species (large slope,
Figure 5) have a steeply increased ECDF curves.

The CART integrated plot data at the county level
provided an objective way to view the spread patterns
of NNIPs and classify counties into invasion stages for
regional-scale planning and management of NNIPs. The
sole reason of using county as the unit to pool inva-
sive data is to meet the need of local governments and
land and resource management agencies in NNIPs man-
agement and planning although the spread of invasive
species is intrinsically not related to the political bound-
aries. The classified invasion stages revealed, generally,
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Figure 4. The relationship between the estimated county-level presence probability (pp) 

and mean cover rate (%)  of (A) multiflora rose, (B) nonnative bush honeysuckles, (C) 

common buckthorn, and (D) garlic mustard by the invasion stage (pstage) classified by 

the CART model in the Upper Midwest counties. 

Figure 4: The relationship between the estimated county-level presence probability (pp) and mean cover rate (%)
of (A) multiflora rose, (B) nonnative bush honeysuckles, (C) common buckthorn, and (D) garlic mustard by the
invasion stage (pstage) classified by the CART model in the Upper Midwest counties.

that NNIPs were first introduced to the central coun-
ties and then gradually spread to surrounding coun-
ties; the highest category of invasion stage serves as a
source region for the spread of NNIPs (Moser et al. 2009,
Moser et al. 2016, Fan et al. 2013). The county maps
of invasion stage give resource managers a tool to locate
target counties and evaluate the severity of NNIPs to al-
locate resources for the control and mitigation of NNIPs.
The use of single-measurement data provides objective
criteria for determining areas of most-severe invasion by
NNIPs and provides for the development of a more rapid
response. The delineated invasion stage maps (Fig-
ure 6) provide more accurate information than separate
smoothed maps of either presence probability or cover
rate of NNIPs in previous studies (Moser et al. 2016,
Fan et al. 2013), and can serve as baseline informa-
tion for the NNIP’s current condition and allow resource

managers to develop timely plans for investigation, con-
trol, or eradication of threats posed by the plants. The
data utilized in developing the invasion stage classifica-
tions was from the 2005-2006 inventory cycle. Further
analysis will incorporate the subsequent inventory data
and use to further refine models based on any newly de-
tected presence or spread of these NNIPs in the region.

Future studies in this region should consider
employing multi-temporal image analysis (after
Becker et al. 2012). This level of analysis, incorporated
with remotely-sensed data could enhance classification
accuracy of NNIPs and allow for their tracking through
time with a greater temporal and spatial resolution
(e.g., 16 days for Landsat at 30 m). It also could
provide invaluable data during non-inventory cycles and
aid in tracking invasion stage.
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Figure 6. Regression lines showing the increase of the mean cover rate (%) with presence 

probability across classified invasion stages for four selected IPs. The numbers in the plot 

are the estimated regression coefficients and standard errors (in parentheses) for slope, a 

quantitative measure of the invasiveness of IPs for corresponding forest type groups. 

Figure 5: Regression lines showing the increase of the mean cover rate (%) with presence probability across classified
invasion stages for four selected NNIPs. The numbers in the plot are the estimated regression coefficients and
standard errors (in parentheses) for slope, a quantitative measure of the invasiveness of NNIPs for corresponding
forest type groups.

4.2 Invasiveness of NNIPs

Invasiveness is illustrated by plotting the regression lines
for the three assessed forest types (Figure 5). Two of
the invasive shrubs, nonnative bush honeysuckles and
common buckthorn, had a higher level of invasiveness
in elm-ash-cottonwood forests than in maple-beech-birch
forests and oak-hickory forests, as indicated by the slope
of the regression line (steepest for elm-ash-cottonwood
forests), but the difference was not statistically signif-
icant due to large variations in the data. Garlic mus-
tard as an invasive herbaceous species had higher inva-
siveness in oak-hickory forests and elm-ash-cottonwood
forests than in maple-beech-birch forests, but this differ-
ence was not statistically significant. Multiflora rose had
nearly identical invasiveness levels in three forest-type
groups (Figure 5). Generally, invasiveness decreases as

the forest types progress toward later successional or
at least more shade-tolerant species, although as Mar-
tin et al. (2008) point out, slow-invading shade-tolerant
species can have dire negative consequences for late-
successional forest systems. Following European settle-
ment, anthropogenic influence has resulted in an increas-
ingly fragmented landscape, leading to early- and mid-
successional communities. In these communities, NNIPs
can establish and spread, including communities of oak,
birch, and aspen (Populus spp.) (Dieser and Ek 2016)
While NNIPs may not readily invade mature, closed-
canopy systems, disturbance may allow them to infil-
trate an area where they outcompete native vegetation
(Gilliam 2007).

Early- and mid-successional forests such as
oak-hickory and elm-ash cottonwood (Sander and
Clark 1971, Oliver 1996, Van Haverbeke 1990) have
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Figure 6: The spatial representation of invasion stages
of selected NNIPs in the Upper Midwest counties.

growing space available for NNIPs. This is problematic
for shade-intolerant species (i.e. cottonwood) that oc-
cupy growing space, particularly in open disturbed sites,
into which NNIPs can establish (Van Haverbeke 1990).
Late-successional forests, such as maple-beech-birch,
forests, are generally comprised of shade-tolerant species
(e.g., sugar maple [Acer saccharum Marsh] (Delcourt
and Delcourt 2000); the niche space is occupied by
these species and the greater leaf area reduces light
availability and is not conducive to the establishment
of NNIPs (Guo et al. 2015).

The balance of late-successional forests or the lack of
NNIPs in early- and mid-successional forests can be in-
fluenced greatly by disturbance (e.g., wind-throw, har-
vest). Canopy reduction through wind-throw, etc. can
disrupt species dominance (Oliver 1996) and create niche
space for NNIPs, from which they can expand through-
out the ecosystem (Frelich and Reich 1995). With new
inventory data, the invasiveness of NNIPs and their im-
pact on recipient ecosystems can be further evaluated
using mapped invasion stages.

5 Conclusions

Procedures have been developed that can be used to clas-
sify the invasion stages of invasive plants based on esti-

mated county-level presence probability and mean cover
rate. This provides a method of classification without
reliance on data collected over long intervals of time,
allowing for a more timely deployment of monitoring
and control measures for NNIPs. However, the coarse
data of cover rate may influence the reliability and ac-
curacy of the classification. We recommend that future
research explore any potential impacts on the accuracy
of maps that classify objective invasion stages. Only
then might researchers and managers be able to evalu-
ate the efficacy of a more detailed and comprehensive
invasion stage and barrier model, such as that posited
by Blackburn et al. (2011), in helping them achieve their
resource management goals.

The results support the classification of the invasion
process into various discrete stages. This practice is dif-
ferent from previous studies in that these classification
procedures, based on information on occupancy (pres-
ence or absence) and abundance of NNIPs, do not re-
quire knowledge about the life-history and genetic traits
of invasive plants and about environmental factors.

The invasion stage for a variety of NNIPs as well as the
invasiveness (susceptibility to invasion) of major forest
types has been shown. The invasiveness of four primary
NNIPs that effect Midwestern forests have been mapped.
The prevalence of multiflora rose led to it being the dom-
inant NNIP. However, the results of this analysis show
common buckthorn, honeysuckle, and garlic mustard to
all be more invasive in Midwestern forests. If fragmen-
tation and disturbance continue with no feasible control,
these species will continue to spread throughout the re-
gion. Forested areas, particularly those with disturbed
patches, should be monitored for the establishment of
NNIPs. This is of greatest significance in those commu-
nities with earlier successional species. Where NNIPs
are detected, steps should immediately be taken to re-
move them before they become established.
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