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E. Milios 1, K. Kitikidou 2, E. Pipinis 3, A. Stampoulidis 4, M. Gotsi 5

1,2,4,5 Dep. of For. & Manag. of the Envir. & Nat. Res., Demokritus University of Thrace, Orestiada, Greece
3 Fac. of Agric., For. & Nat. Envir. School of For., The Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract. The classical method for estimating a height-diameter model is based on the Least Squares
Method (LSM) and the fit of a regression line. The Bayesian method has an exclusive advantage, compared
with the classical method, in that the parameters to be estimated are considered as random variables. In
this study, the Simple Linear Regression (SLR) model and the Bayesian model were used to estimate bole
height from breast height diameter. We used data of the forest stands of Rhodope (north-eastern Greece).
variables that we used were the tree bole height and the diameter at breast height. The results showed
that there is an improvement in prediction accuracy with the Bayesian model; however, this didn’t lead to
narrower confidence intervals of the predicted value, compared to SLR. Narrower confidence intervals are
not necessarily achieved with Bayesian methods; confidence intervals’ width is related to both statistical
analyses and nature of data (in this case, species ecology and structure - composition of the stands where
the sampled trees belong).

Keywords: Bayes, regression; tree height; tree bole.

1 Introduction

Forests play an important role in the wood produc-
tion, recreation, carbon sinks and climate change (FAO
2006). Height and diameter are the most common
variables measured to estimate tree volume, site qual-
ity and other important variables in forest growth and
yield, species’ succession and carbon estimation models
(Peng et al. 2001). Breast height diameter of individ-
ual trees is easy to measure with high accuracy in the
field, and minimum cost. On the contrary, tree height
is not easy to estimate on standing trees; it is a time-
consuming procedure, subjected to observation error,
and affected by optical obstacles (Colber et al. 2002).
Tree volume estimation and site quality, as well as the
description of a stand’s dynamics and species’ succes-
sion over time, are greatly dependent by the accuracy
of height-diameter models (Curtis 1967). There is a
series of height-diameter models, developed for several
forest species (Peng et al. 2004, Temesgen et al. 2007,
Van Laar & Akca 2007). These models can be used
to estimate a missing height for a tree, while hav-
ing the diameter at breast height measured (Shong-
ming et al. 1992, Hann 2006), to estimate indirectly
the height increment (Larsen & Hann 1987), and to
estimate tree biomass applying biomass models (Pen-

ner et al. 1997). Chave et al. (2005) found that the most
important parameters in biomass estimation of tropi-
cal forests, in decreased order, are the breast height di-
ameter, the wood density, the height and the forest’s
moisture (dry forest, forest with medium or heavy mois-
ture). Comprising height as a variable, in biomass mod-
els, reduces significantly the standard error of biomass
estimation. Therefore, an accurate tree height estima-
tion should be imposed in forest inventories, simulation
models, forest management and decision support sys-
tems (Peng et al. 2001, Colber et al. 2002, Curtis 1967).

Curtis (1967) compared the fit of linear height-
diameter models, in data of Douglas-fir trees (Pseudot-
suga menziesii (Mirb.) Franco). Since then, with the
relatively easy fit of nonlinear models, many nonlin-
ear models have been developed for estimating height
(Fekedulegn et al. 1999). However, because the tree
shape and allometry are affected by competition and
environmental factors (Batziou et al. 2016, King 1991,
Kitikidou et al. 2016), any changes in these condi-
tions over time will probably affect the height-diameter
relationship. This can cause uncertainty in height es-
timation from the diameter. An important limitation
in these models is that they produce very different re-
sults, when applied in different stands from those where
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they originally were developed (Calama & Montero 2004,
Nogueira et al. 2008). Also, the height-diameter rela-
tionship is not stable over time, even in the same stand
(Flewelling & Jong 1994, Lappi 1991). These differences
could have significant effects in biomass and dynamic
carbon sinks. Uncertainty in height estimation, due to
time changes, must be taken into account, when height-
diameter relationships in natural stands are examined,
and there are no available methods to resolve this prob-
lem.

From all these points previously described, one can as-
sess that, even a small improvement in height-diameter
models, is worthy of investigation, especially regard-
ing bole height, which is referring to merchantable vol-
ume. Merchantable volume is the main interest of
forest inventories and the most contributing variable
in forest biomass and carbon sinks. Bayesian anal-
ysis is an alternative method of statistical inference,
frequently used in ecological models’ evaluation (An-
holt et al. 2000, Toivonen et al. 2001, Shen et al. 2003).
In forestry, Bayesian methods were adopted in sev-
eral applications, like the estimation of aboveground
biomass (Zapata-Cuartas et al. 2012), in diameter dis-
tribution (Bullock & Boone 2007) and basal area distri-
bution (Nyström & St̊ahl 2001), in tree growth estima-
tion (Clark et al. 2007), mortality estimation (Wyckoff
& Clark 2000, Metcalf et al. 2009), stands’ height and
volume estimation (Stewart & Weiskittel 2012), and in
individual tree height estimation (Zhang et al. 2014).

Fagus sylvatica L. expands into a wide area of Europe
and up to southern Scandinavia, but in the Mediter-
ranean area appears only in the mountains (Korakis
2015). Fagus sylvatica is a very important tree species
for Greece, since beech forests compose 5.17% of Greek
forests, while beech stands provide 20.05% of the mer-
chantable volume of forests in the country (Ministry of
Agriculture 1992).

In this study, we have developed Bayesian height-
diameter models for beech trees, examining numerous
trials from one wide study area. Since nonlinearity in
a height-diameter relationship is not always detectable
within an even-aged stand, due to sample sizes that can-
not display lack of fit of the linear model, or excessive
random variability of heights within certain diameter
classes (Van Laar & Akca 2007), Simple Linear Regres-
sion (SLR) models were developed. We compared the
Bayesian height-diameter models to their corresponding
SLR models (i.e. regression models developed with Least
Squares Method (LSM)), in order to see if there is any
improvement in height estimation.

2 Materials and Methods

2.1 Study area

The study was conducted in the central part of the
Rhodope mountains, in the north part of the Xanthi re-
gion, in north-eastern Greece (Fig. 1). The climate can
be characterized as humid with harsh winters. The soils
in the areas where data was collected are mainly acid
brown forest soils (Dystric Cambisoils) (Milios 2000).
The data were taken from areas having an elevation that
ranges from approximately 580 to 1700 m.

Figure 1: Study area (wide view).

The elevation of the western part of the study area
(Fig. 2, red polygon points) ranges from 1100 to 1725
m, while that of the eastern part (Fig. 2, green polygon
points) ranges from 580 to 750 m.

Figure 2: Study area (large display).

In the total study area, 2809 F. sylvatica trees were
measured in plots of 500 m2 (25 m x 20 m). The plots
had been established randomly, in the context of other



Milios et al. (2018)/Math.Comput. For.Nat.-Res. Sci. Vol. 10, Issue 2, pp. 58–67/http://mcfns.com 60

Table 1: Descriptive statistics of measured variables

Trial No. Trees Variable Mean Standard Min. Max.
(Productivity) No. (n) Deviation

1 2809
D (cm) 14.78 10.95 4 67
Hb (m) 3.65 3.63 0 23.5

2 1495
D (cm) 12.4 8.75 4 67
Hb (m) 3.02 2.43 0 16

3 1398
D (cm) 13.4 10.32 4 63
Hb (m) 3.26 3.13 0 20

4 2157
D (cm) 13.48 9.99 4 67
Hb (m) 3.3 2.95 0 20

5 753
D (cm) 13.48 9.28 4 62
Hb (m) 2.39 2.42 0 14.5

6 210
D (cm) 27.85 13.72 4 65
Hb (m) 8.98 6.31 1 23.5

7 1526
D (cm) 14.24 11 4 63
Hb (m) 3.53 3.45 0 20

8 2367
D (cm) 14.75 11.15 4 67
Hb (m) 3.8 3.75 0 23.5

9 754
D (cm) 16.69 11.56 4 67
Hb (m) 4.7 4.24 0.5 23.5

10 1968
D (cm) 14.39 10.75 4 63
Hb (m) 3.38 3.33 0 20

studies, for the analysis of stand structure and dynamics
in pure and mixed stands in areas of various productiv-
ities. In each tree, the breast height diameter and the
bole height were measured. In particular, the measured
trees came from pure beech stands in good and medium
productivity sites, from Pinus sylvestris – F. sylvatica
stands growing in good, medium and poor productivity
sites, from Fagus sylvatica – Abies borisii-regis stands
growing in medium productivity sites, and from Quercus
petraea – Fagus sylvatica found in medium productivity
sites (Milios 2000). In P. sylvestris – F. sylvatica stands,
P. sylvestris was the dominant species of the overstorey
in almost all cases (Milios 2000). From different mix-
tures and productivity sites, ten different combinations
(trials) were created for the analysis. Descriptive statis-
tics of measured variables, in each trial, are given in
Table 1.

2.2 Trial No (Productivity)

1. All

2. Good for Pinus sylvestris - Fagus sylvatica, medium
for Pinus sylvestris - Fagus sylvatica, and poor for
Pinus sylvestris - Fagus sylvatica

3. Medium for Pinus sylvestris - Fagus sylvatica,
medium for Fagus sylvatica - Abies borisii-regis, and
medium for Quercus petraea - Fagus sylvatica (west-
ern part)

4. Good for Pinus sylvestris - Fagus sylvatica, medium
for Pinus sylvestris - Fagus sylvatica, poor for Pinus
sylvestris - Fagus sylvatica, medium for Fagus syl-
vatica - Abies borisii-regis, and medium for Quercus
petraea - Fagus sylvatica (western part)

5. Medium for Quercus petraea - Fagus sylvatica
(western part), and medium for Quercus petraea -
Fagus sylvatica (eastern part)

6. Good for Fagus sylvatica, and medium for Fagus
sylvatica

7. Medium for Pinus sylvestris - Fagus sylvatica,
medium for Fagus sylvatica - Abies borisii-regis,
medium for Quercus petraea - Fagus sylvatica (west-
ern part), and medium for Fagys sylvatica

8. Good for Pinus sylvestris - Fagus sylvatica, medium
for Pinus sylvestris - Fagus sylvatica, medium for
Fagus sylvatica - Abies borisii-regis, medium for
Quercus petraea - Fagus sylvatica (western part),
good for Fagus sylvatica, and medium for Fagus syl-
vatica
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9. Good

10. Medium

2.3 SLR models developed with LSM

In a scatterplot with an independent ( X) variable and
a dependent ( Y) variable, the goal of a linear regression
model is to fit a line through the points. Specifically,
with LSM, the squared deviations of the observed points
from that line are minimized.

2.4 Bayesian model

Suppose y = (y1, y2, y3, ...) is a vector of data and
θ = (θ1, θ2, θ3, ...) is a vector of parameters, which will
be estimated. The Bayes rule is expressed as follows:

p (y, θ) = p (y |θ ) p (θ) = p (θ |y ) p (y) (1)

where p is a density probability function. While the val-
ues of θ are estimated with LSM or Maximum Likelihood
Estimation in the classical approach, in the Bayesian ap-
proach we use probability distributions to describe the
uncertainty in the parameters that are about to be esti-
mated. The θ have a probability distribution, which is
calculated as another form of (1):

p (θ |y ) =
p (y |θ ) p (θ)

p (y)
(2)

where p (y) =
∫
p (y |θ ) p (θ)dθ for continuous θ. The

integration of the acceptable values θ, p(y) is not depen-
dent on θ and can be considered as constant for constant
y, a fact that leads to the relationship (3):

p (θ |y ) ∝ p (y |θ ) p (θ) (3)

What we are interested in the Bayesian analysis is the
estimation of the conditional probability, i.e., the poste-
rior probability distribution. The p (y |θ ) is giving us the
distribution of y assuming that the θ is known, i.e., it is
the function of maximum likelihood when it is consid-
ered as a function of the θ parameters (Edwards 1992).
The p(θ) is the prior probability distribution of the θ
parameters, and it represents all available information
regarding y. So, the relation (3) is suggesting that the
posterior distribution of θ is analogous to the likelihood
of y, given the θ and the prior distribution of θ.

The important characteristic of the Bayesian analy-
sis is that the models’ parameters are considered to be
random variables (Stewart & Weiskittel 2012), while in
the classical method of Least Squares, the models’ pa-
rameters are considered fixed values (Edwards 1992, De
Valpine & Hastings 2002).

The selection of the prior distribution is essential in
the Bayesian analysis (Gelman et al. 2004). If there is

no available information regarding parameters’ distribu-
tion, we can accept ignorance of the prior distribution,
i.e. accept an uninformative, Gaussian prior distribu-
tion.

Bayesian parameters are estimated by applying the
SPSS AMOS (Analysis of Moment Structures) software,
v.21.0 (Arbuckle 2012). We defined to run 100000 it-
erations, from which the initial 500 were considered as
initial stages of the chain before it converges (burn-in
period).

2.5 Comparison of the classical and the
Bayesian method

Three statistical criteria were used for the classical
(SLR - LSM) and the Bayesian method comparison (Ki-
tikidou 2005):

� Absolute mean error Bias =

n∑
i=1
|Hbi−Ĥbi |

n (opti-
mum value = 0).

� Standard error of the estimate of theoretical values

se =

√
n∑

i=1
(Hbi−Ĥbi)

2

n−p (optimum value = min).

� Coefficient of determination R2 = 1−
n∑

i=1
(Hbi−Ĥbi)

2

n∑
i=1

(Hbi−Hb)
2

(optimum value = 1).

where:
Hbi = bole height of the i-th tree
Ĥbi = estimated bole height of the i-th tree
Hb = mean bole height of the sampled trees
n = sample size (number of trees in each trial)
p = number of the model’s parameters = 2.

3 Results

From the ten trials of Table 1, bole height estimation
was improved by applying the Bayesian method, in all
of them. Comparison statistics for these ten trials, the
estimated mean bole height, its confidence interval, and
variance, are shown in Table 2, while SLR are shown in
Table 3. We observe that in general (i.e. except for trials
2, 6, and 9), the Bayesian models gave bigger values
for the estimated mean bole height, wider confidence
intervals, and bigger variance.

In the trace plots of Figures 3a-3j, the convergence
that was succeeded by running the algorithm, is as-
sessed. The fast, up-and-down interchange, without
trends (patterns), shows that the convergence was suc-
ceeded in a short time.
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Figure 3: Trace plot of the variance of the breast height diameter D (a: Trial 1, b: Trial 2, c: Trial 3, d: Trial 4, e:
Trial 5, f: Trial 6, g: Trial 7, h: Trial 8, i: Trial 9, j: Trial 10).

Table 2: Statistics for the trials in which bole height estimation was improved with the Bayesian method (SE –
Standard Error; LB – Lower Bound; UB – Upper Bound; CI – Confidence Interval; EM – Estimated Mean; No –
Number; ht – height).

Trial No of Classical method (SLR, LSM) Bayesian method
No trees Bias SE R2 EM CI of the EM Bias SE R2 EM CI of the EM

(n) bole ht LB UB bole ht LB UB

1 2809 2.103 3.009 0.314 3.6538 1.654 13.348 1.706 2.5702 0.499 3.8124 0.642 24.727
2 1495 1.593 2.1891 0.191 3.0204 1.999 9.6609 1.382 2.1184 0.243 2.9807 0.584 21.284
3 1398 1.756 2.5304 0.347 3.2614 1.582 12.12 1.557 2.4088 0.408 3.5916 0.73 24.595
4 2157 1.798 2.51 0.276 3.2976 1.827 11.599 1.566 2.393 0.342 3.4607 0.642 24.605
5 753 1.558 2.2673 0.126 2.3923 1.512 6.901 1.331 2.0033 0.318 2.8157 0.554 17.051
6 210 4.286 5.2663 0.306 8.9767 2.91 18.426 3.77 4.7892 0.426 5.2725 0.233 19.358
7 1526 1.898 2.7464 0.367 3.5265 1.579 12.796 1.644 2.5164 0.469 3.8676 0.731 24.728
8 2367 2.096 3.0081 0.356 3.8015 1.644 14.285 1.726 2.6168 0.513 3.9402 0.665 24.728
9 754 2.589 3.5377 0.304 4.7031 2.139 14.872 1.954 2.8066 0.562 4.1765 0.598 22.972
10 1968 1.953 2.7852 0.3 3.3775 1.619 11.607 1.633 2.4648 0.451 3.7044 0.652 24.733

In Figures 4a-4j, the autocorrelation of the values of
the variance of D, during iterations, is illustrated. The
lag across the horizontal axis is referred to the interval
in which the autocorrelation is estimated. In common
situations, we expect that the autocorrelation coefficient

is reducing till zero, and stays close to zero in all the
following lag intervals. As illustrated on Figures 4a-4j,
the initial 500 iterations (burn-in period) were more than
enough, to ensure convergence.
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Figure 4: Autocorrelation of the variance of the breast height diameter D (a: Trial 1, b: Trial 2, c: Trial 3, d: Trial
4, e: Trial 5, f: Trial 6, g: Trial 7, h: Trial 8, i: Trial 9, j: Trial 10).

Table 3: SLR models for each trial.

Trial No Classical method (SLR, LSM)

1 Ĥb = 0.911 + 0.186D

2 Ĥb = 1.512 + 0.122D

3 Ĥb = 0.868 + 0.179D

4 Ĥb = 1.207 + 0.155D

5 Ĥb = 1.140 + 0.093D

6 Ĥb = 1.892 + 0.254D

7 Ĥb = 0.819 + 0.190D

8 Ĥb = 0.841 + 0.201D

9 Ĥb = 1.331 + 0.202D

10 Ĥb = 0.942 + 0.169D

In Figures 5a-5j, the classical (SLR, LSM) vs. the
Bayesian model is illustrated, for each trial, in which the
Bayesian model improved the bole height estimation.

4 Discussion and Conclusions

Estimating bole height from breast height diameter, ap-
plying the Bayesian method to the classical regression
method (SLR, LSM) lead to an improvement of estima-
tion accuracy (an increase of the coefficient of determi-
nation R2), in all our trials, conducted in the same wide
study area. However, the confidence intervals of the es-
timated mean bole height were larger, a fact that is in
contradiction to the study of Zhang et al. (2014). This is
the result of the combination of the species ecology and
the structure – composition of the stands where the mea-
sured trees came from. Beech is a shade tolerant species
having growth plasticity (Assman 1970). As a result,
in mixed stands where beech grows together with less
shade tolerant species that dominate in the overstorey,
beech trees in the understory and middle story have
enough light to grow a long live crown. Shade intolerant
species do not have as dense crowns as shade tolerant
species, and they generate less shade, since, in contrast
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Figure 5: Height-diameter model (a: Trial 1, b: Trial 2, c: Trial 3, d: Trial 4, e: Trial 5, f: Trial 6, g: Trial 7, h:
Trial 8, i: Trial 9, j: Trial 10).
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to shade tolerant species, after their youth, they cannot
form shade leaves (see Dafis 1986, Oliver & Larson 1996,
Lacointe et al. 2004). Thus, when shade-tolerant trees
with large diameters of the overstorey, grow with shade
intolerant species, they grow longer crowns compared to
those growing in pure stands, or mixed stands having
other shade tolerant species since more light reaches the
lower part of boles. In the present study, this is obvious
in all the trials where beech grows with P. sylvestris or
Q. petraea. Pinus sylvestris is shade intolerant, while Q.
petraea is moderately shade-intolerant (Korakis 2015).
In these trials, the Bayesian method overestimates the
bole height of trees having large diameters, compared to
the classical regression method, leading to larger confi-
dence intervals (Figs. 5a-5e, Figs. 5g-5j). Only in trial
6, which is the only trial with pure beech stands (and
crowns of the trees with large diameters are short) the
Bayesian method does not overestimate the bole height
(Fig. 5f). So, the Bayesian method does not give a pri-
ori narrower confidence intervals; confidence intervals’
width is related to the characteristics of the data.

Another finding of the present study is that in both
methods (classical and Bayesian), in trials from mixed
stands of P. sylvestris - F. sylvatica and/or Q. petraea
- F. sylvatica (trials 2 and 5) the R2 values are lower
than in the other trials. One should note that, in trials
with pure beech stands (1, 6, 7, 8, 9 and 10) the R2

values in the Bayesian method are rather high, while in
some of these trials (1, 8, 9 and 10) the increase of the
R2, compared to the classical method, is very high. The
lowest R2 value of these trials is found in trial 6, where
trees only from pure stands participate. This pattern
indicates that bole height prediction is more accurate
where trees from all growth environments are present.
However, even in the case where only trees from pure
beech stands are present, the Bayesian method provides
a rather high R2 value. The behaviour of these models
is affected by the growth characteristics and ecology of
beech, which have been described previously. Probably
the existence of trees from pure beech stands provides an
adequate number of large trees having high bole height
in the sample (small crown length is a result of competi-
tion among shade-tolerant trees), improving the model’s
performance.

In trial 9 (good productivity sites) the R2 value of 0.56
is an indication that growth conditions in different site
productivities may influence the model’s performance.
However, in trial 10 (medium productivity sites) the R2

value was lower than that of trial 1.

To sum up, the Bayesian method is an important
tool, used more and more by ecologists (Hui et al. 2006,
Hui et al. 2011, McCarthy et al. 2007). For this specific
application in bole height estimation, more independent
variables could be added in the future, such as site qual-

ity index, age, or stand density (Temesgen & Gadow
2004, Newton & Amponsah 2007).

Acknowledgements

Thanks are due to the anonymous reviewers and the
MCFNS editors for their helpful comments improving
the manuscript.

References

Anholt, B., Werner, E., & Skelly, D. 2000. Effect of food
and predators on the activity of four larval ranid frogs,
Ecology, 81 (12): 3509–3521.

Arbuckle, J. 2012. IBM SPSS Amos 21 User’s Guide,
IBM Corporation, 653 p., USA.

Assmann, E. 1970. The Principles of Forest Yield Study,
Pergamon Press, 506 p., New York, USA.

Batziou, M., Milios, E., & Kitikidou, K. 2016. Is di-
ameter at the base of root collar a key characteristic
of seedling sprouts in a Quercus pubescens - Quer-
cus frainetto grazed forest in Northeastern Greece? A
morphological analysis, New Forests, 48(1): 1–16.

Bullock, B., & Boone, E. 2007. Deriving tree diameter
distributions using Bayesian model averaging, Forest
Ecology and Management, 242, (2–3): 127–132.

Calama, R., & Montero, G. 2004. Interregional nonlin-
ear height-diameter model with random coefficients
for stone pine in Spain, Canadian Journal of Forest
Research, 34(1): 150–163.

Chave, J., Andalo, C., Brown, S., Cairns. M., Chambers,
J., Eamus, D., Fölster, H., Fromard, F., Higuchi, N.,
Kira, T., Lescure, J., Nelson, B., Ogawa, H., Puig, H.,
Rira, B., & Yamakura T. 2005. Tree allometry and
improved estimation of carbon stocks and balance in
tropical forests, Oecologia, 145(1): 87–99.

Clark, J. S., Wolosin, M., Dietze, M., Ibáñez, I., LaDeau,
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