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REVERSE CAUSALITY IN SIZE-DEPENDENT GROWTH

Oscar Garćıa
Dasometrics, Concón, Chile

Abstract. Size-dependent growth is likely to be growth-dependent size instead. Larger organisms do not
necessarily grow faster, but faster-growing ones always tend to be larger. This fact has been generally
ignored. Correct causality structures are essential for plausible predictions outside the range of the
data. Some techniques potentially useful for studying these issues are briefly described. In forestry, the
relevance of multiple size measures like volume, height, diameter and basal area complicates the picture.
Additionally, purely mathematical sources of growth-size correlations arise. Physiological considerations
suggest avoiding stem thickness measures as explanatory variables in growth equations.
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effects, endogenous variables, instrumental variables, allometry.

1 Introduction

Growth models typically utilize regressions of growth
rate on size, possibly with additional independent vari-
ables (Weiskittel et al. 2011). A causal relationship is
usually implied, with growth rate depending on current
size. Size-dependent growth is also the subject of theo-
retical generalizations that have attracted much atten-
tion (e.g. Damuth 2001, Sheil et al. 2017, and refer-
ences therein). However, size is an accumulation of past
growth, and therefore faster growth causes larger size,
not necessarily the other way around. Although once
stated this observation seems obvious, the only refer-
ence related to biological growth that I have found is
in Perry (1985): “past competitive interactions are in-
tegrated in current tree size.” The statistical difficulties
have been recognized in econometrics where, for a linear
discrete-time growth model, least-squares estimation is
known to be biased and inconsistent (Bun and Sarafidis
2015, this is discussed in detail below in Section 3).

Does it matter? The direction of causality may not
be important for prediction in populations similar to the
one originating the data. For instance, for yield forecast-
ing of unmanaged or lightly managed forest stands, as in
many growth model applications (Weiskittel et al. 2011).
Or with intensive management where sufficient data is
available, so that growing conditions are largely inter-
polated rather than extrapolated (Goulding 1994). On
the other hand, causality rather than just correlation
is crucial for understanding process dynamics, and for

prediction under circumstances not represented in the
data.

The section that follows explains further the statisti-
cal confounding arising from causal ambiguity. Sections
3, 4 and 5 sketch some techniques that might help in
understanding those issues, and perhaps eventually in
dealing with them more effectively. All that assumes
that “size” is expressed as a single number, typically
biomass or volume. This is the case most commonly
found in the literature, and demonstrates most clearly
the main problems. Although a one-dimensional size
can be appropriate for animals or annual plants, tree
size is more accurately described by at least two dimen-
sions, height and radius (or diameter, circumference or
cross-sectional area). Longitudinal and radial growth
derive from different meristems, and respond differently
to various growing conditions. This multivariate descrip-
tion complicates things, giving rise to additional, purely
mathematical, sources of correlation that are discussed
in Section 6. The paper closes with a Conclusions sec-
tion.

2 The problem

A minimal example may be useful for exposing the es-
sentials (Lee and Garćıa 2016). Assume that tree annual
volume increment ∆v in a forest stand is constant over
time, and that it is not affected by tree size. Neverthe-
less, ∆v varies among trees due to genetics, microsite,
competition, or other factors. Take 3 trees with incre-
ments of 2, 5, and 10 dm3 / year. The tree volumes v at
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age 10 are 10 times the increment, i.e., 20, 50, and 100
dm3. Plotting increment over size (Figure 1) indicates a
perfect regression model ∆v = 0.1 v (or more generally,
∆v = v/t). This model produces exact predictions for
trees of any size, but it is biologically “wrong”, in the
sense that in this instance ∆v does not causally depend
on v. The example could be embellished by introducing
growth variability and measurement error, and by using
larger samples of trees. Then the regression would not
be error-free, but the predictions would still be better
than those from any model not including v as a predic-
tor. The wrong model is best.

Figure 1: Artificial example of a perfect non-causal relation-
ship, estimating tree volume growth increment from current
tree volume (see text).

Lee and Garćıa (2016) analyzed real growth data from
spruce-hardwoods mixtures in British Columbia. The
best tree volume growth rate estimates not using cur-
rent volume had R2 values of 0.62 with spatially explicit
competition indices, and 0.75 with distance independent
competition indices1. In contrast, a simple linear regres-
sion ∆v = β0 + β1v had R2 = 0.86.

In general, consider a regression for growth rate

∆y = f(y,x) , (1)

where y = y(t) is current size, and x is a vector of
additional independent variables. The dependent vari-

1 Unlike most competitions indices, those used in the study did
not contain embedded tree diameter measurements. Presumably
the perfect plasticity assumption behind the aspatial indices is
better than the assumption of no plasticity in the spatial ones
(Strigul et al. 2008).

able ∆y could be an annual increment y(t + 1) − y(t),
a periodic increment y(t + k) − y(t) or [y(t + k) −
y(t)]/k, or even an instantaneous increment in continu-
ous time, dy/dt. In forestry, these regressions have been
called self-referencing models (Northway 1985, Strub
and Cieszewski 2012). Because y is an accumulation
of past values of ∆y for each individual, in a heteroge-
neous population the two variables are correlated. That
can produce good fit statistics, even if ∆y is not causally
dependent on y. The fit is good not necessarily be-
cause larger individuals grow faster, but because faster-
growing individuals tend to be larger. Predictions are
based essentially on an extrapolation of past growth
rates (Lee and Garćıa 2016). The extrapolation can fail
if there is a change in the growing conditions that pre-
vailed in the sample (e.g., Russell et al. 2015).

Of course, students of statistics are taught that corre-
lation is not causation, and that models should not be
used outside the range of the data. But the first point is
often forgotten in the interpretation of research results.
And models are invariably pushed beyond the comfort
zone. After all, if we had enough data for all the condi-
tions of interest there would be little need for models.

3 The dynamic panel data model in
econometrics

Panel data consists of observations at consecutive
times t = 1, 2, . . . , T on each of N items or individu-
als i = 1, 2, . . . , N . The (linear) dynamic panel data
model can be written as

yit = αyi,t−1 + β′xit′ + uit . (2)

Here the vector xit′ may include various regressors ob-
served at times such as t′ = t, t′ = t− 1, t′ = t− 2, etc.
The error term uit varies across individuals as

uit = λi + εit , (3)

where λi is unobserved individual heterogeneity, and the
εit are errors with mean 0 and equal variance, indepen-
dent across individuals and times.

The yit depend on the value of λi, so that in par-
ticular the regressor yi,t−1 and the error uit in eq. (2)
are correlated. In econometric terminology yi,t−1 is en-
dogenous (correlated with the error term), as opossed
to exogenous (independent of the error term as assumed
in standard linear regression). Consequently, it is found
that the ordinary least-squares (OLS) estimate of α is
biased. Worse, OLS is inconsistent, that is, estimates do
not converge to the true values as N →∞ for fixed T .

Dynamic panel data models have been used to study
size-dependent growth of firms and other organizations.
To put them in the notation of Section 2, re-label eq. (2)
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as
yi,t+1 = αyit + β′xit + uit , (4)

making use of the fact that uit has the same distribution
for all t. Then,

∆yit = yi,t+1 − yit = (α− 1)yit + β′xit + λi + εit . (5)

Bun and Sarafidis (2015) review estimation meth-
ods for the dynamic panel data model, and point out
that there is an implicit stationarity assumption. That
might not be suitable for biological growth modelling,
where interest focuses on transients far from a steady
state. Econometric methods may or may not be useful
for growth parameter estimation, but the main point is
the recognition that OLS fails when size appears on the
right-hand side of the growth rate regression.

4 A mixed effects view

A key property of the dynamic panel data model is the
presence of individual heterogeneity, λi. More generally,
the regression model of eq. (1) may be written as

∆yit = f(yit,xit,γ,λi, εit) , (6)

for observations on individuals i = 1, . . . , N at times
t = ti1, . . . , ti,Ti . In growth data the number and tim-
ing of measurements on each individual and the time
intervals can vary. The local parameters λi are specific
to individual i, while the global parameters γ are com-
mon to all. In econometrics, locals are called incidental
parameters, globals are called structural, and εit is an
idisioncratic error.

For instance, the minimal example of Section 2 might
be written as

∆vit = γvit + λi + εit , (7)

where we assumed γ = 0, λ1 = 2, λ2 = 5, and λ3 = 10,
and εit was ignored.

The model of eq. (6) could be estimated, for in-
stance, by maximum likelihood. The locals can be con-
sidered either as fixed unknown individual-specific pa-
rameters, or as random variables representing sampling
from some hypothetical meta-population of individuals
(Garćıa 2017b, Sec. 3.3). The random locals alternative
is far more popular nowadays, corresponding to a mixed
effects model. The parameters could be estimated with
mixed-effects software. Note however that, as indicated
in Section 2, standard fit statistics will be worse than
those for the “wrong” model that ignores individual het-
erogeneity.

5 Path analysis and structural equa-
tion models

Path analysis is a technique for studying causal re-
lationships, developed by Sewell Wright in the 1920’s

(Wright 1921, Bollen 2005a). Later, inference methods
were refined in Structural Equation Modelling (SEM;
Bollen 2005b, Fox 2006, Umbach et al. 2017). Applica-
tions have been mostly in the social sciences, but more
recently biological uses have increased (Iriondo et al.
2003, Lamb et al. 2011).

The approach allows for testing postulated causal
models, assessing if they are consistent with the data.
The model is commonly visualized in a path diagram.
Figure 2 shows a tentative path diagram for the exam-
ple of Section 2. Variables are classified as observed,
unobserved (also called latent), or disturbances (errors).
Each observed variable is enclosed in a box. Latent vari-
ables appear in ellipses or ovals. Errors are not enclosed
in either, or are sometimes placed in ovals or circles since
they are also unobserved. Arrows between variables in-
dicate direct causal influences (paths). In path analysis,
a path coefficient associated to each path is calculated.

Δv vλ

ε ε
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b
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path coef.

observablelatent
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Figure 2: A path diagram for the model behind the example
of Section 2. The dashed arrow represents a possible “real”
size effect.

For the example, v and ∆v are the observed variables
size and growth rate, respectively. The unobserved vari-
able λ represents the growth rate intrinsic to each tree.
Together with random variation (assumed to be 0 in the
numerical example), it determines the actual growth in-
crement. Growth increments cause the size to increase.
A size observation error has been included in the dia-
gram. SEM could be used to evaluate the consistency
of this model with observed data, and to compare it to
an alternative that adds a direct causal effect of size
on growth, represented by the dashed arrow (γ 6= 0 in
eq. (7)).

6 Which size?

In trees, growth in stem volume or biomass is the re-
sult of two fundamentally different processes, growth in
height, and growth in radius, diameter or cross-sectional
area. Height (and branch-length) growth results from
the activity of apical meristems, while radial growth
is generated in the cambium. It is well-known that
height growth is less sensitive to competition than ra-
dial growth, so that height-diameter relationships vary

mailto://garcia@dasometrics.net
http://mcfns.com
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depending on past stand densities. Therefore, allometric
relationships that estimate volume or biomass from di-
ameter can only be accurate for growing conditions sim-
ilar to those in the data from which they are derived2.

It follows that uni-dimensional growth-size relation-
ships are unsatisfactory for trees and forests. It is nec-
essary to take into account simultaneously the dimen-
sional components: at least height, diameter, and in for-
est stands, number of trees.

Confusion also arises from the use of different variables
in growth-size relationships: biomass or volume, or the
more easily obtained diameter or basal area. In fact,
the behavior of their increments is quite different, as
shown by Assmann (1970, p. 151). His result for stand
volume vs basal area can be easily proved in continuous
time, with instantaneous increments denoted as V̇ =
dV/dt. Assume that V = α + βBH, where V is stand
volume, B is basal area per hectare, and H is mean or
top height (for simplicity we avoid the volume as product
of basal area and form-height used by Assmann). Then,
differentiating,

V̇ = β(ḂH +BḢ) . (8)

This is essentially equivalent to Assmann’s equation.
Solving for Ḃ gives

Ḃ =
V̇

βH
− Ḣ

H
B , (9)

which shows that even if V̇ is independent of size, Ḃ does
depend on B (and H). Similarly, Lee and Garćıa (2016)
show that if a tree volume is approximated in terms of
tree dbh d and height h by α+ βd2h,

ḋ =
v̇

2βhd
− ḣd

2h
. (10)

For models to have a chance of performing acceptably
outside the range of the data, they need to reflect the
causal logic of the biological processes. Good fit statis-
tics for purely empirical relationships are not sufficient.
It makes sense to have growth in biomass, or in its proxy
stem volume, as a dependent variable reflecting carbon
capture and accumulation. Height influences the costs
of evapotranspiration, and also dominance relationships
in the case of individual trees or cohorts, so that it is a
reasonable predictor. Stand density is also an important
factor. Stem diameter, however, reflects the accumula-
tion of mostly dead xylem on the stems, and there is
little physiological justification for including it on the
equation right-hand sides; the same is true for volume
or basal area (Garćıa 2017a).

2 Allometry is used here in the original sense of Huxley (1932),
a (usually power) function of a single independent variable. The
term is often misused as referring to any arbitrary volume or
biomass function.

7 Conclusions

Size-dependent growth may actually be growth-
dependent size. The direction of causality is not impor-
tant for management that does not deviate markedly
from the conditions represented in the data. Empiri-
cal extrapolation of past growth can be highly effective.
Increasingly though, models are applied to new situ-
ations, including natural or management disturbances
and environmental change. Understanding the system
and proper causal modelling are then essential.

It can be difficult to disentangle the true causal ef-
fects, although mixed-effects modelling, path analysis
and structural equation models seem promising tools.
My presentation of those topics has been brief and ten-
tative. I admit not fully understanding all aspects of
the problem and of the techniques, and that some of the
details might not be entirely correct. Obviously, more
research is needed. But I believe that the important
point is to get researchers to recognize that there is a
problem, something that has not happened.

With trees and forests, simple one-dimensional
growth-size models are unsatisfactory, because size com-
ponents like height and diameter are important and re-
act differently to growing conditions. Purely mathemati-
cal sources of correlation from these variables complicate
the picture. Multidimensional systems of growth equa-
tions are needed. Still, adequate causal structures are
essential if forecasts for previously unobserved situations
are desired. In particular, it is suggested that diameter
and basal area should be banished from the right-hand
side of growth equations (Garćıa 2017a). Experiments
might be useful where tree size and growing conditions
are uncoupled, e.g., through randomized (not selective)
thinning.
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Lee, M. J., and O. Garćıa, 2016. Plasticity and extrap-
olation in modeling mixed-species stands. Forest Sci-
ence 62(1):1–8.

Northway, S. M., 1985. Notes: Fitting site index equa-
tions and other self-referencing functions. Forest Sci-
ence 31:233–235.

Perry, D. A., 1985. The competition process in forest
stands. In Attributes of Trees as Crop Plants, Cannell,
M. G. R., and J. E. Jackson, eds., chapter 28, pp. 481–
506. Institute of Terrestrial Ecology, Abbots Ripton,
Hunts, England.

Russell, M. B., A. W. D’Amato, M. A. Albers, C. W.
Woodall, K. J. Puettmann, M. R. Saunders, and C. L.
VanderSchaaf, 2015. Performance of the Forest Vege-
tation Simulator in managed white spruce plantations
influenced by Eastern spruce budworm in Northern
Minnesota. Forest Science 61(4):723–730.

Sheil, D., C. S. Eastaugh, M. Vlam, P. A. Zuidema,
P. Groenendijk, P. van der Sleen, A. Jay, and J. Van-
clay, 2017. Does biomass growth increase in the largest
trees? Flaws, fallacies and alternative analyses. Func-
tional Ecology 31(3):568–581.

Strigul, N., D. Pristinski, D. Purves, J. Dushoff, and
S. Pacala, 2008. Scaling from trees to forests:
Tractable macroscopic equations for forest dynamics.
Ecological Monographs 78(4):523–545.

Strub, M., and C. Cieszewski, 2012. The compara-
tive R2 and its application to self-referencing mod-
els. Mathematical and Computational Forestry &
Natural-Resource Sciences (MCFNS) 4(2):73–76.

Umbach, N., K. Naumann, H. Brandt, and A. Kelava,
2017. Fitting nonlinear structural equation models in
R with package nlsem. Journal of Statistical Software
77(7):1–20.

Weiskittel, A. R., D. W. Hann, J. John A. Kershaw,
and J. K. Vanclay, 2011. Forest Growth and Yield
Modeling. Wiley-Blackwell. 430 p.

Wright, S., 1921. Correlation and causation. Journal of
Agricultural Research 20(7):557–585.

mailto://garcia@dasometrics.net
http://mcfns.com

	Introduction
	The problem
	The dynamic panel data model in econometrics
	A mixed effects view
	Path analysis and structural equation models
	Which size?
	Conclusions
	REFERENCES



